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3D printing is an important technology in many industries because it allows for
quick and flexible production of parts. However, resins used in LCD 3D printing often lack
the mechanical strength needed for high load-bearing applications. Adding materials to
improve the mechanical properties of these resins has become a key area of research.
This study examines the use of reduced graphene oxide (rGO) and multi-wall carbon
nanotube (MWCNT) as additives. These carbon-based nanomaterials are known for their
high strength and flexibility. The research focuses on adding 0.1% w/w of rGO or MWCNT
to resin to enhance its mechanical properties. The mechanical properties studied include
the Young’s modulus and maximum tensile strength of 3D-printed samples. Tensile testing
was performed using the ASTM D638 type V standard. The results show that resin with
rGO or MWCNT has higher Young’s modulus and maximum tensile strength compared to
regular resin. This demonstrates that these carbon-based nanomaterials can effectively
improve the mechanical properties of 3D-printed parts. The findings confirm that rGO and
MWCNT are promising.additives for strengthening resins:used in LCD 3D printing. Future
research could focus on refining the additive ratios and exploring other carbon-based

materials to achieve even better results.
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CHAPTER |
INTRODUCTION

1.1 Background and motivation

3D printing, also known as additive manufacturing, is a process of creating three-
dimensional objects from three-dimensional digital design. This technology has the
potential to enhance processes in designing, prototyping, and manufacturing products in
a wide range of fields, including engineering, architecture, medicine, and art (Shahrubudin,
N., Lee, T. C. and Ramlan, R. (2019)). With 3D printing, complex geometric shapes and
details can be produced with high precision and accuracy, making it a powerful tool for
innovation and creativity.

The 3D printing process involves building an object layer by layer, using a variety
of materials such as plastics, resins, metals, and living cells (Abdollahi, S., Davis, A., Miller,
J. H. and Feinberg, A. W. (2018)). The digital design is first converted into cross-sectional
slices by slicing software, which are then fed into the 3D printer. The printer then builds
the object by depositing material layer by layer until the final product is complete. (Lee,
J-Y., An, J. and Chua, C. K. (2017))

There are various types of 3D printing, one of them is LCD 3D printing LCD 3D
printing, also known as MSLA (mask stereolithography), is a type of 3D printing technology
that uses a liquid crystal display (LCD) to selectively cure a layer of resin to form a 3D
object. It is a type of resin-based 3D printing, which uses liquid photopolymer resins that
solidify when exposed to light.

The LCD 3D printing process commences with the preparation of a digital model
using 3D modeling software. Subsequently, the digital model undergoes slicing, where it
is divided into numerous thin layers, thereby establishing the foundation for the

subsequent printing stages. The hardware components of the LCD 3D printer, comprising



the LCD panel, light source, resin vat, and build platform, are meticulously calibrated and
readied for the printing operation.

However, this method is limited to the use of UV-curable resins, which can be
more fragile than other types of materials. While resin can be formulated to have desired
properties, such as stiffness, flexibility, or transparency, the range of available materials is
still limited compared to other types of 3D printing methods. This work focuses on
enhancing mechanical properties, such as tensile strength and Young’s modulus, of a
standard resin with carbon-based nanomaterial, graphene, and carbon nanotube.
Graphene is a single layer of carbon atoms arranged in a hexagonal lattice. Carbon
nanotubes are cylindrical carbon molecules that have a diameter of a few nanometers
(typically between 1 and 100 nanometers) and can be several micrometers long. These
materials are known as strong and lightweight materials, making them useful for a range
of applications.

To enhance the mechanical properties of the UV resin, carbon-based nanomaterial
was added to liquid resin. After the carbon-based material has been dispersed in the resin,
the mixture can be used in a 3D printer to create a printed object. To investigate the
effectiveness of the addition of carbon-based material, this study used tensile testing to
determine improvements in mechanical properties. Specifically, the tensile strength and

Young’s modulus of the standard resin and the carbon-based composite resin.

1.2 Research objectives

1.2.1 To compare the mechanical properties, such as tensile strength and Young’s
modulus, of a standard resin with carbon-based composite resin.

1.2.2 To determine the best 3D-printing conditions for composite resin.

1.2.3 To investigate the effect of the concentration of the carbon-based composite

material in the resin on the mechanical properties of the printed objects.



CHAPTER Il
LITERATURE REVIEW

2.1 LCD 3D printing

From all photocuring 3D printing techniques, such as Stereolithography (SLA),
Digital Light Projection (DLP), and Liquid Crystal Display (LCD) 3D printing, the biggest
differences are the light source and imaging systems. While SLA 3D printing uses a laser
diode and DLP technologies use a projector to cure resin layer by layer, in LCD 3D printing,
the liquid crystal display (LCD) panel serves as the light source. The high resolution of the
LCD panel allows for greater precision in producing fine details and complex shapes in the
printed product, which is a significant advantage. However, one limitation of LCD 3D
printing is the potential for lower print quality due to the pixel of the LCD panel, which
may result in lower surface finish and resolution compared to SLA or DLP printing.

In addition to the printing accuracy, the major difference between DLP and LCD
3D printing is the light intensity. The light intensity is an important factor for
photopolymerization which determines the speed of printing and curing degree. In LCD
3D printing, the light source is diffused and less intense than in DLP printing, which can
result in less precise curing and potentially lower print quality.

During the printing process, the LCD panel serves as the primary interface for
displaying the initial layer of the sliced digital model onto the resin surface contained
within the vat, as demonstrated in Figure 1.1 (Mohamed, M. G. A., Kumar, H., Wang, Z.,
Martin, N., Mills, B. and Kim, K. (2019)). By selectively masking the pixels, the LCD panel
allows for the controlled emission of UV light, which in turn initiates a
photopolymerization reaction within the resin. As a result of this reaction, the liquid resin
undergoes a conversion into a solid state, conforming to the pattern delineated by the

displayed layer.
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Figure 2.1 Demonstration of LCD resin printer while printing each layer. (1) The printing
process begins with the resin vat being filled with uncured resin. (2) The building plate,
initially positioned lower but remaining untouched to the transparent film, establishes a
gap that corresponds to the thickness of the first layer to be printed. The LCD screen,
serving as the light source, selectively illuminates the predetermined areas of the resin
vat that correspond to the desired shape and structure of the first layer. (3) The building
plate is then lifted, separating it from the transparent film and the solidified first layer.
This movement creates space for the subsequent layer to be printed. (4) Following the
lifting of the building plate, it is lowered again to the desired distance from the transparent
film creating the gap for the formation of the second layer. (5) The process of LCD
illumination, building plate lifted, and subsequent layer formation is repeated. (6) This
involves the continuous repetition of layer formation, building plate movement, and layer
solidification until the final object is fully constructed. (Modified from Mohamed, M. G. A,,
Kumar, H., Wang, Z., Martin, N., Mills, B. and Kim, K. (2019)).



To achieve completed three-dimensional products, the build platform, which
holds the growing object, descends incrementally. Each incremental descent affords the
necessary space for the subsequent layer to be deposited atop the previously solidified
layer. This layer-by-layer process ensures the gradual construction of the desired object.
Consequently, the LCD panel continuously displays each subsequent layer, while the UV
lisht selectively solidifies the resin, adhering to the corresponding pattern for that specific
layer.

Upon the completion of the printing process, which encompasses the successful
fabrication and solidification of all layers, the build platform ascends, facilitating the
removal of the printed object from the resin vat. Then, post-processing steps may be
undertaken to refine the object's properties. Such steps might include a thorough
cleansing to eliminate any residual uncured resin or the implementation of additional

curing procedures, aiming to optimize the object's final characteristics.

2.2 Reduced graphene oxide

Graphene is a two-dimensional material composed of a single layer of carbon
atoms arranged in a hexagonal lattice (Markandan, K. and Lai, C. Q., (2020)). It is considered
a wonder material due to its properties, which include high electrical conductivity, thermal
conductivity, and mechanical strength (Lim, S. M., Shin, B. S. and Kim, K. (2017)).

One of the most notable properties of graphene is its electrical conductivity.
Graphene is an excellent conductor of electricity, and its conductivity is about 100 times
greater than copper (Hanon, M., Ghaly, A., Zsidai, L., Szakal, Z., Szab¢, I. and Katai, L. (2021)).
It also provides high thermal conductivity, making it a promising material for heat
dissipation applications (Maheshwar, S. and Madhuri, S. (2010)). Another important
property of graphene is its mechanical strength, yet it is extremely lightweight and flexible.
This property makes graphene popular for use in high-performance composites and
lishtweight materials. However, obtaining large-scale, defect-free graphene sheets is

challenging due to limitations in existing synthesis methods.



Graphene oxide (GO) is a derivative of graphene that is produced through a process
called oxidation and exfoliation. This process involves treating graphite, which is a three-
dimensional carbon-based material found in pencil lead, with strong oxidizing agents, such
as a mixture of concentrated sulfuric acid and potassium permanganate. The oxidation
introduces various oxygen-containing functional groups, such as epoxides, hydroxyls, and
carboxyls, onto the graphene lattice, resulting in the formation of graphene oxide.
Graphene oxide possesses unique properties that distinguish it from pristine graphene. It
becomes hydrophilic due to the presence of oxygen functional groups, allowing it to
disperse well in water and other polar solvents. However, the incorporation of these
functional groups disrupts the Tl-conjugated electron system of graphene, leading to a
loss of electrical conductivity and mechanical strength.

To restore some of the exceptional properties of pristine graphene, researchers
employ a reduction process to transform graphene oxide into reduced graphene oxide
(rGO). The reduction process aims to selectively remove or reduce the oxygen-containing
functional groups while preserving the graphene-like structure. This reintroduces sp2
carbon-carbon bonds and partially restores the original electronic and mechanical
properties of graphene. As a result, rGO exhibits improved electrical conductivity and
mechanical strength compared to graphene oxide, making it more suitable for various

practical applications.

2.3 Carbon nanotubes

Carbon nanotubes (CNTs) are cylindrical structures made of carbon atoms, with a
diameter of a few nanometers and a length that can range from a few micrometers to
several millimeters (Harris, P. J. F. (2004)). They can be thought of as a rolled-up sheet of
graphene, which is a single layer of carbon atoms arranged in a hexagonal lattice.

There are two main types of carbon nanotubes: single-walled carbon nanotubes
(SWCNTSs), which consist of a single cylindrical layer of carbon atoms, and multi-walled

carbon nanotubes (MWCNTSs), which consist of multiple concentric layers of carbon atoms.



SWCNTs and MWCNTs can have different properties, and their potential applications may
differ as a result.

Carbon nanotubes have unique mechanical, electrical, and thermal properties that
make them attractive for a wide range of applications (Andrews, R. and Weisenberger, M.
C. (2004)). They are among the strongest and stiffest materials known to humans, with a
tensile strength that is about 100 times greater than steel. They are also excellent
electrical conductors, with the ability to carry electric current at very high speeds and over
long distances. Additionally, they have high thermal conductivity, making them good
conductors of heat.

One of the most promising applications of carbon nanotubes is in electronics. Their
exceptional electrical conductivity and small size make them attractive for creating faster
and more efficient electronic devices. Researchers are exploring their use in transistors,
sensors, and energy storage devices, among other applications. Carbon nanotubes also
have potential applications in materials science. They can be used to reinforce polymers,
such as plastics and composites, making them stronger and more durable. They can also

be used as a conductive additive in adhesives, coatings, and inks.

2.4 Tensile testing

Tensile testing is a standard mechanical testing method used to determine the
mechanical properties of a material. During a tensile test, a sample of the material is
subjected to a gradually increasing tensile load until it breaks. The load applied to the
material is measured, as well as the amount of deformation (strain) that the sample
undergoes (Harding, J. and Welsh, L. M. (1983)). These measurements are used to calculate
the tensile strength and Young’s modulus of the material.

The tensile strength of a material is determined by the maximum load it can
withstand before breaking, divided by its cross-sectional area. The equation for tensile

strength (TS) is

TS — Fmax
A )



Where Fp, 4 is the maximum load or force applied to the specimen during the

tensile test and A is the original cross-sectional area of the specimen.
The Young’s modulus, also known as elastic modulus, is determined by the ratio
of the applied stress (load per unit area) to the resulting strain (change in length divided

by the original length) which can be written in the equation below,

E=2

£
where E is the Young’s modulus, 0 is the applied stress, and € is the resulting

strain. The Young’s modulus is a measure of a material's stiffness or resistance to
deformation under an applied load.

Stress is @ measure of the force per unit area applied to a material under an
external load. It is calculated by dividing the applied force by the original cross-sectional
area of the material. The result represents the stress at a specific point in the material
and is commonly used in mechanical testing to measure a material's strength and

deformation properties. This relation can be written by the equation below,
F
o= —,
A
Where @ is the stress applied to the specimen, F is the applied force and A is
the original cross-sectional area of the specimen.
Strain is @ measure of the deformation of a material under load. It is defined as
the ratio of the change in length of the material to its original length. It is typically

expressed as a decimal or percentage. It can be calculated using this equation,

AL

T,

Where € is the strain, AL is the change in length of the specimen and L is the

original length of the specimen.
One significant outcome derived from tensile testing is the stress-strain curve,
which serves as a graphical portrayal illustrating the relationship between the stress

applied to a material and the resultant strain it experiences. This curve plays a pivotal



role in offering valuable insights into the mechanical behavior and properties of a material
under varying loading conditions.

From Figure 2.2, when a material is subjected to low levels of stress, it undergoes
elastic deformation. This elastic region signifies that the material can revert to its original
shape upon stress removal. In this linear relationship between stress and strain, the
material adheres to Hooke's Law. The slope of the stress-strain curve in the elastic region
corresponds to the material's elastic modulus, which provides an indication of its stiffness
and ability to resist deformation.

As stress continues to increase, the material may reach a critical point referred to
as the yield point. At this juncture, the material begins to exhibit permanent deformation
even after the stress is removed. The yield point signifies the transition from elastic to
plastic deformation and is important in understanding the material's behavior.

Beyond the yield point lies the plastic region, wherein further stress application
leads to permanent deformation. The stress-strain curve in this region assumes a non-
linear form, and the material may experience strain hardening or softening, depending on
its composition and properties. This stage may also witness necking, which refers to a
localized reduction in cross-sectional area.

The stress-strain curve culminates at the ultimate tensile strength (or maximum
tensile strength), which represents the maximum stress a material can withstand before
fracturing. This point serves as the peak on the curve, highlighting the material's critical
limit. Beyond the ultimate tensile strength, the material undergoes significant deformation
and ultimately fails.

At the fracture point, the material experiences sudden and rapid failure, leading to
complete separation or rupture of the specimen. This stage is characterized by a dramatic
drop in stress, coupled with an abrupt increase in strain.

Through the analysis of the stress-strain curve, various mechanical properties of
the material can be determined. These include Young's modulus, which corresponds to
the slope of the linear elastic region and signifies the material's stiffness and resistance to

deformation. Additionally, the yield strength indicates the stress at which plastic
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Figure 2.2 The stress-strain curve obtained through experimental testing, specifically a
tensile test. In the elastic region, the relationship between stress and strain is linear. The
slope of the stress-strain curve in the elastic region represents the material's elastic
modulus, which indicates its stiffness. Beyond the yield point, the material enters the
plastic region, where further stress leads to permanent deformation. The stress-strain
curve in this region is non-linear, and the material experiences strain hardening or softening,
depending on its composition and properties. The maximum stress a material can
withstand without fracture is known as the maximum tensile strength. It represents the
peak point on the stress-strain curve. Once this stress level is reached, the material begins

to deform significantly and eventually fails.

deformation commences, while the ultimate tensile strength reflects the maximum stress

the material can withstand before fracturing. Ductility refers to the material's ability to
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undergo plastic deformation without breaking, and toughness represents the total energy
absorption capacity of the material before fracture.

Elongation at break, also known as strain at failure, is a mechanical property that
can be derived from the stress-strain curve of a material. When a tensile test is performed
on a sample, it undergoes deformation, and the stress-strain curve illustrates the
relationship between the applied stress (force per unit area) and the resulting strain
(deformation). Elongation at break refers to the maximum amount of strain or deformation
that a material can undergo before it breaks or fractures. It represents the percentage
increase in length of the sample compared to its original length just before it fails.

To calculate elongation at break from the stress-strain curve, one needs to identify
the point on the curve where the sample fractures (breaks). The strain at this point is then
measured as the percentage increase in length relative to the original length.

Elongation at break is an essential parameter for evaluating the ductility and
flexibility of a material. Materials with high elongation at break can undergo significant
deformation before failure, indicating their ability to absorb energy and withstand
stretching forces, making them suitable for applications that require resilience and
toughness. Conversely, materials with low elongation at break are more brittle and may
be more prone to sudden failure under stress.

Tensile testing is an important tool for material characterization, and it is
commonly used in industries such as aerospace, automotive, and construction. It can also
be used in research and development to study the effects of different materials and

processing parameters on mechanical properties.



CHAPTER Il
METHODOLOGY

3.1 Materials, instruments and printing conditions

3.1.1 Materials and instruments

The experimental setup for this study involved the utilization of an Elegoo Mars 3
(Shenzhen Elegoo Technology Co.,Ltd) 3D printer to fabricate the samples. The printer
offers a printing dimension of 89.6 mm * 143.43 mm * 175 mm for width, length, and
height, respectively. In the xy-plane, the printer operates with a screen resolution of 0.035
mm or 35 micrometers, corresponding to 4098 * 2560 pixels. This high resolution is crucial
as it directly impacts the quality and level of detail achieved in the printed products.

In this study, the base material utilized was eSUN standard white resin, a product
of Shenzhen Esun Industrial Co., Ltd. To enhance the mechanical properties of the resin,
we incorporated two nanomaterials, namely reduced graphene oxide (rGO) and multi-wall
carbon nanotube (MWCNT), obtained from Graphene Globe Technology Co. Ltd., based in
Thailand. The composite resin was prepared with a concentration of 0.1 % by weight (w/w)
for both rGO and MWCNT.

3.1.2 Printing conditions

To ensure standardization and comparability, all samples were fabricated in
accordance with ASTM D638 type V standards, with the dimensions of the model following
9.53 mm in width, 63.5 mm in length, and 3.2 mm in height. Furthermore, a gauge length's
width of 3.18 mm was established around the neck of the model as shown in Figure 3.1
and Figure 3.2.

In this experiment, we conducted a comprehensive exploration of the printing

process by systematically varying the exposure time for each printing layer. Specifically,
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we employed exposure times of 4, 8, 12, 16, and 20 seconds, allowing us to analyze the
impact of these varying durations on the resulting samples.

To ensure a comprehensive assessment of the printed samples, we adopted three
distinct orientations: X, Y, and Z, as shown in Figure 3.3. In the X orientation, the width
face of the sample was oriented parallel to the printing plate. For the Y orientation, we
placed the same face of the sample perpendicular to the printing plate, offering a different
perspective for observation. Last, we employed the Z orientation, where the small face
of the sample was in contact with the printing plate.

By exploring the printing process using these diverse orientations and varying
exposure times, we aimed to gain valuable insigshts into the influence of printing
parameters on the final outcomes and establish a deeper understanding of the optimal
settings for achieving desired properties in the printed samples.

Following the completion of the printing process, a meticulous post-printing
procedure was implemented to ensure the utmost quality of the samples. The samples
underwent a thorough cleaning regime utilizing 99.99% isopropanol (IPA) to meticulously
remove any traces of residual uncured resin. This crucial step was undertaken to achieve
pristine surfaces and prevent any potential deformations in the printed specimens upon
exposure to daylight.

To further enhance the structural stability of the samples, a UV light curing process
was subsequently employed. The specimens were exposed to UV light for a precisely
controlled duration of 90 seconds. This UV curing step induced cross-linking reactions
within the resin, contributing to the solidification and improved mechanical properties of
the 3D printed components.

It is noteworthy to mention that, despite the curing process, the predetermined
exposure times for each printing layer were maintained without any interference. The
selected 90-second curing time was chosen to ensure that it would not compromise or
alter the originally varied exposure times, thus preserving the integrity of the experimental
setup and allowing for accurate assessment of the impact of exposure time on the final

mechanical properties of the 3D printed samples.
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63.5 mm

318 mm :

953 mm

3.20 mm

Figure 3.1 A schematic representing the dimensions of the ASTM D638 Type V model used for tensile
testing.

Figure 3.2 The 3D model CAD schematic illustrates the dimensional representation of the ASTM D638

Type V model used for tensile testing in mm.
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Figure 3.3 The samples were printed in three different orientations, X, Y, and Z orientations.

3.2 Material Characterization

Before mixing the composite resin, reduced graphene oxide (rGO) and multi-wall
carbon nanotube (MWCNT) were analyzed to confirm their quality. This analysis used two
methods: scanning electron microscopy (SEM). Scanning Electron Microscopy was used to
observe the surface structure and shape of the rGO and MWCNT. The images helped
identify their size and how well they might mix with the resin. It also helped confirm that

the materials were pure and evenly distributed.

3.3 Resin and composite resin preparation

According to the information presented in Figure 3.4, the preparation of the carbon
composite resin mixture involved blending 3D resin with carbon-based composite at a
concentration of 0.1% w/w. To achieve a homogeneous mixture, the resin was stirred using

a magnetic stirrer for a duration of 4 hours. Subsequently, the resin mixture was carefully
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introduced into the vat of the Elegoo Mars 3 LCD 3D printer, facilitating the subsequent
printing of the designated test specimens.

Following the printing process, a thorough analysis of the results was undertaken
to meticulously examine and discern the influence of several crucial factors, namely the
concentration of graphene, the exposure time, and the orientation of printing, on the
mechanical properties of the 3D printed carbon-based composite specimens. This
comprehensive investigation aimed to shed light on the interplay between these
influential variables and the resultant mechanical characteristics of the printed specimens,
thereby unraveling vital insights for optimizing the fabrication process and enhancing the

overall performance of the 3D printed carbon-based composite materials.

Addition
carbon-based

I 4. \ (
3D printing resin

SE | ?

Magnetic stirrer Resin mixture 3D printing
4 hrs.

Figure 3.4 The diagram illustrates the experimental process employed for the carbon-based added

resin.

3.4 Tensile testing

The tensile testing took place utilizing the Instron 5565 universal tensile machine,
located in room F5109 within the F5 building at Suranaree University of Technology.
Throughout the testing, a constant pulling speed of 0.1 mm/min was employed, with a
maximum load capacity of 5 kN.

Following the completion of the tensile testing, the acquired data will be utilized
to plot the stress-strain curve, providing valuable insights into the material's mechanical
behavior. By analyzing the linear elastic region of the curve, the slope will be determined,

facilitating the calculation of Young's modulus, an essential material property indicative of
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its stiffness and elasticity. For each testing condition, a total of 7 specimens were tested
to ensure robustness and accuracy, and the desired results were obtained by calculating
the average of mentioned 7 sets of stress-strain curves.

Moreover, the stress-strain curve will yield additional data, such as the maximum
tensile strength and elongation at break, both of which serve as vital indicators of the
material's mechanical properties. The maximum tensile strength represents the highest
point on the curve, signifying the material's capacity to withstand stretching forces before
failure occurs. On the other hand, elongation reflects the extent to which the material
can deform before reaching its breaking point.

Through an examination of these parameters, a comprehensive understanding of
the mechanical properties of the printed samples can be attained. By comparing these
material properties, valuable insights can be drawn to assess the impact of various factors,
such as graphene concentration, exposure time, and printing orientation, on the final
performance and structural integrity of the 3D printed carbon-based composites. Such
comparative analyses play an essential role in guiding material selection and optimizing
the fabrication process to achieve desired properties and performance in practical

applications.
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Figure 3.5 During the analysis of the stress-strain curve, the calculation of Young's modulus involves
determining the slope of the linear elastic region. Additionally, valuable data concerning the elongation

at break can be obtained by evaluating the tensile stress percentages from the curve.



CHAPTER IV
RESULT AND DISSCUSSION

4.1 Material characterization and analysis
4.1.1 Reduced graphene oxide (rGO)
The SEM images of the reduced graphene oxide (rGO), as shown in Figure 4.1,

reveal a clumped structure instead of the expected flat sheet morphology. This

aggregation may arise from strong van der Waals forces and TU-TU stacking interactions
between the graphene sheets, which cause them to stick together during the reduction
process. The removal of functional groups during reduction increases the hydrophobicity
of the sheets, further promoting aggregation.

Incomplete exfoliation of the starting graphite oxide material may also contribute
to this clumped morphology. If the exfoliation step is not thorough, the sheets may remain
partially stacked, leading to aggregation after reduction. Additionally, the absence of
dispersing agents, such as surfactants or polymers, could exacerbate the tendency of the
sheets to clump together.

It is important to note that this rGO sample was supplied by an industrial source,
and the preparation techniques were not disclosed. Specific manufacturing parameters,
such as the reduction method and post-processing conditions, could also influence the
observed morphology.

This clumped morphology could significantly affect the mechanical properties of
rGO when used in composite materials. The reduced effective surface area and poor
dispersion can limit the formation of strong interfacial bonds between the rGO and the
matrix material. As a result, the material's ability to enhance mechanical strength, stiffness,
and toughness in composites may be diminished. To improve the mechanical performance

of rGO in applications, efforts should focus on preventing aggregation during the
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preparation process. This could include optimizing exfoliation techniques, using stabilizing
agents, or modifying reduction methods to achieve a more uniform and sheet-like
morphology. Achieving better dispersion of rGO sheets in composite systems could

enhance load transfer and improve the overall mechanical properties of the final material.

1 2 3 4 5 6 7 8 9 10
Full Scale 25249 cts Cursor: 10.191 (0 cts) keV

Figure 4.1 The SEM image of rGO, captured at an EHT of 3 kV with a magnification of 1000x,
reveals a clumped structure rather than the expected flat sheet morphology (left). The
EDS spectrum of rGO indicates an elemental composition of 5.39 wt% carbon, 40.15 wt%
oxygen, and 6.46 wt% sulfur (right).

The elemental composition of reduced graphene oxide (rGO), determined through
Energy Dispersive X-ray Spectroscopy (EDS), reveals 5.39 wt% carbon, 40.15 wt% oxygen,
and 6.46 wt% sulfur. These results provide insights into the material’s properties and its
influence on the performance of composite 3D resin. The high oxygen content indicates
incomplete reduction of graphene oxide, leaving functional groups such as hydroxyl,
carboxyl, and epoxy on the surface. These residual functional groups can improve
compatibility with the resin matrix by enhancing chemical bonding at the interface, leading
to better stress transfer and improved mechanical strength and stiffness. However, the
high oxygen content can also reduce the electrical conductivity and thermal stability of
the composite, potentially limiting its use in applications requiring these properties.

The presence of sulfur, which likely originates from the synthesis or reduction
process, contributes to the chemical functionality of rGO. Sulfur may exist as sulfonic acid
groups or other sulfur-containing functionalities. These groups can improve crosslinking or

chemical interactions with the resin, enhancing adhesion and mechanical properties.
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However, the sulfur content may also introduce structural defects or impuirities, which
could reduce the overall reinforcement efficiency of the rGO in the composite.

The relatively low carbon content suggests that the graphene-like structure of rGO
has not been fully restored, indicating a lack of sufficient sp? carbon domains. This
limitation affects its mechanical and electrical properties. The reduced carbon content
weakens rGO’s ability to transfer stress effectively, leading to a less significant
improvement in the mechanical properties of the composite. Furthermore, the low carbon
content diminishes the potential for rGO to enhance the composite’s electrical
conductivity.

The clumped morphology of rGO, coupled with the high oxygen and sulfur content,
may influence its dispersion within the resin matrix. On one hand, the oxygen and sulfur
groups improve dispersibility, preventing ageregation and ensuring a more uniform
distribution of rGO within the resin. On the other hand, the incomplete reduction process
and potential defects limit the material’s ability to act as a reinforcing agent effectively.
These functional groups, however, can be leveraged to tailor the composite for specific
applications, such as improving adhesion or chemical functionality, although this may
compromise its electrical and thermal performance.

4.1.2 Multi-walled carbon nanotubes (MWCNT)

The SEM and EDS analysis of the multi-walled carbon nanotubes (MWCNTSs), as
shown in figure 4.2, provides key insights into their structure and composition. The SEM
images reveal that the MWCNTs do not exist as isolated single tubes but instead form
groups of thread-like bundles. This bundling behavior is a common characteristic of
MWCNTs due to their strong van der Waals forces and TU-TU stacking interactions, which
promote aggregation. The EDS analysis further shows that the MWCNTs consist of 98.6 wt%
carbon and 1.4 wt% oxygen. The high carbon content confirms the purity of the material,
while the small amount of oxygen suggests the presence of minimal functional groups or

residual oxidation byproducts.



22

. ey & 1 2 3 4 5
10um i Electron Image 1 Full Scale 12433 cts Cursor: 10.322 (0 cts) keV

Figure 4.2 The SEM image of MWCNT, captured at an EHT of 3 kV with a magnification of

5000x, show that the MWCNTSs are not present as isolated single tubes but instead form
grouped, thread-like bundles (left). The EDS analysis indicates that the MWCNTs are
composed of 98.6 wt% carbon and 1.4 wt% oxygen (right).

The grouped structure of the MWCNTSs, while advantageous for maintaining high
tensile strength, could affect their performance in the composite 3D resin. The bundled
configuration might limit the effective surface area available for interaction with the resin
matrix, reducing the efficiency of stress transfer between the nanotubes and the resin.
However, the thread-like structure can still contribute significantly to reinforcing the
composite by acting as a framework that distributes mechanical loads more evenly. This
is especially beneficial for enhancing the tensile strength and stiffness of the resin.

The small oxygen content plays a dual role in the composite. On the one hand,
the presence of oxygen-containing functional groups can improve the compatibility of the
MWCNTSs with the resin matrix, promoting better interfacial bonding and thereby enhancing
the overall mechanical properties. On the other hand, the low level of oxygen indicates
that the MWCNTSs retain their intrinsic electrical conductivity and thermal stability, which
can be advantageous for applications requiring high conductivity or heat dissipation in the

composite material.

4.2 Preliminary experiments
This section encompasses the preliminary version of the experiments, which serves

as a steppingstone to the subsequent experiment. Following the preliminary experiment
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and tensile testing, an issue was observed where the samples would typically break
outside the gauge length, resulting in failed results as in Figure 4.3. To delve into this
matter, we made various parameter and testing method adjustments. Eventually, we

identified the root cause was the inappropriate grip.

Figure 4.3 The preceding samples encountered issues with shear forces and fracture
occurred around the grip area rather than at the neck region.

The old grip had a slippery contact surface, leading to shear forces between the
grip and the samples. To address this concern, we replaced the grip with a new one
featuring a contact surface equipped with miniature spikes (Figure 4.4). These spikes aided
in stabilizing the samples during tensile testing, preventing any slippage and ensuring the
samples remained securely in place. As a result, this modification successfully resolved

the problem, allowing for more reliable and consistent results in subsequent tensile tests.
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Figure 4.4 The previous grip (left) had a smooth surface contact in contrast to the current

grip (right), which features a rough texture.

4.3 Printed samples characteristics

After the grip was changed, the issue of the samples breaking outside the gauge
length was successfully resolved. As depicted in Figure 4.5, the samples exhibited
consistent behavior, with fracture occurring solely around the neck area for all tested
samples.

However, another issue arose during the printing process, specifically concerning
the samples in the y direction. It is essential to note that in 3D printing, the initial layer,
often referred to as the bottom layer, plays a critical role in preventing the printed layers
from detaching from the printing plate. This bottom layer needs to exhibit higher adhesion
compared to subsequent layers. Typically, SLA and LCD 3D printing involve around 5
bottom layers. To ensure the bottom layer's effectiveness, it is crucial for it to be
adequately exposed to UV light, typically ranging from 20 to 60 seconds, depending on
the resin type and light source power. However, a problem emerged with the bottom
layers due to excessive exposure to UV light. When the resin is overly exposed, the light
can unintentionally affect regions outside the intended selected area, causing the
hardening region to spread. This effect is known as the “overexposure” or “overshoot”

effect.
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Figure 4.5 After the grip change, the samples demonstrated a consistent pattern, with
fracture occurring exclusively around the neck region in all the tested samples. The Figure
provided illustrates the 8s neat resin samples after undergoing tensile testing.

The overexposure effect, which is distinctly noticeable in the y orientation samples,
can be attributed to the arrangement of the printing samples. The bottom layers of the
samples coincide with the initial region of the neck area. Consequently, when
overexposure occurs, it affects this region as well, leading to the observed results in Figure
4.6, particularly for the 12s, 16s, and 20s samples. However, the effect is minimal for the

4s and 8s samples, making it negligible.
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Figure 4.6 The overshoot effect is evident in the y orientation samples from 4s to 20s
exposure time. Although the 4s and 8s samples presented minor issues, the 12s, 16s, and
20s samples exhibited more prominent overshooting, even after recalibrating the 3D
printer using three layers of A4 paper.

In an attempt to address this issue, we endeavored to re-calibrate the 3D printer.
During the calibration process, we employed an A4 paper to cover the screen and then
gradually lowered the building plate by loosening the screws. Subsequently, the printing
plate was aligned smoothly in parallel with the screen, and the screws around the printing
head were tightened. Initially, we hypothesized that the building plate might have been

too close to the screen, causing incorrect gap layers. However, after re-calibrating using
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three layers of Ad paper (Figure 4.7), we observed improvements in the 4s and 8s samples,
with the overshooting area slightly reduced. Nevertheless, for the 12s and longer exposure
time samples, the overshoot effect remained unchanged. This observation led us to
conclude that the overshoot effect becomes more pronounced after an 8s exposure time.

Despite the observed overshoot effect, we proceeded with the process to further

investigate its potential impact on the mechanical properties of the samples.

effectively by employing three pieces of Ad papers.

4.4 Mechanical properties

This section presents the data obtained from the experiment. Our expectations
were that longer exposure times would result in higher strength and toughness of the
products, as indicated by increased values in both maximum tensile strength (MTS) and

Young's modulus. Additionally, we anticipated that the printing orientation would
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influence the mechanical properties. This is because the 3D printing process involves
constructing the object layer-by-layer, and the adherence between adjacent layers may
be affected by the different orientations, subsequently impacting the mechanical
properties. Therefore, this section aims to provide a comprehensive overview of the data,
covering all the aspects mentioned above, including the effects of exposure time and
printing orientation on the mechanical properties of the samples.

4.4.1 Mechanical properties of normal resin

Based on the stress-strain curve analysis, we have obtained the results for both
neat or normal resin and carbon-based composite resin samples. As shown in Figure 4.8,
the maximum tensile strength of neat resin is presented in units of MPa, corresponding to
the exposure time for each of the x, y, and z orientations. From the plot, we observe that
the maximum value is 18.84 + 0.58 MPa for the y-20s sample, while the minimum value
recorded was 9.35 + 0.8 MPa. Based on the plot, a general trend can be observed for both
y and z orientations, indicating that the strength of the samples increases with longer
exposure times. However, for the x orientation samples, the maximum tensile strength did
not exhibit such a distinct pattern, as the x-12s sample displayed a higher MTS compared
to the x-16s and x-20s samples. Regarding the influence of orientation, it is evident that,
at 12s, 16s, and 20s, the samples in the y direction tend to outperform those in other
conditions. However, for the 4s and 8s samples, notable differences are not observed
among the orientations.

Figure 4.9 displays the Young's modulus of the neat resin, and we can observe that
it follows a similar trend to the maximum tensile strength discussed earlier. Among the x
direction samples, the 12s sample stands out as having the highest Young's modulus,
deviating from the expected pattern. On the other hand, the z orientation samples seem
to adhere more closely to the expected behavior in this plot. Notably, the 12s, 16s, and
20s samples cluster around 1.2 GPa, a particularly intriguing observation. At this stage, we
do not have a definitive explanation for this behavior, so we plan to investigate further

and consider additional results to shed light on this interesting phenomenon.
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Figure 4.8 The maximum tensile strength of the neat resin is displayed in MPa

corresponding to the exposure time for the x, y, and z orientations.

units,

Young's modulus (GPa)

1.6

20

0.6

S
'S

<
o

(=]

0.532

0

3

Young's modulus of neat resin

1AL ) 93701.243
TN

0.728

0.528 0.550 0.562

20 4 8 12 16 20 4

y
Exposure time (s)

0.616

20

Figure 4.9 The Young’s modulus of the neat resin is displayed in GPa units, corresponding

to the exposure time for the x, y, and z orientations.
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4.4.2 Mechanical properties of 0.1%w rGO composite resin

Concerning the addition of rGO, our expectations were that both Young's modulus
and maximum tensile strength (MTS) would be higher than those of the normal resin. As
such, we can now compare the mechanical properties between the normal printed
product and the reinforced product, considering the enhancements attributed to the
incorporation of rGO. This comparison will provide valuable insights into the benefits and
improvements brought about by the addition of rGO in terms of the mechanical
performance of the printed products.

Upon analyzing the plot of the maximum tensile strength for the 0.1% w/w rGO
composite resin at various exposure times and orientations, the overall results appear
promising, except for the x direction (Figure 4.10). The MTS value for the 12s sample in
the x direction was notably lower, and there was little distinction between the 16s and
20s samples compared to the 8s samples. Conversely, the y and z orientations align more
closely with the expected outcomes, with the z-20s sample being very similar to the 16s
sample, although the difference is acceptable given the values obtained. Further
investigations are warranted to understand the specific factors contributing to the
observed discrepancies in the x direction.

Regarding the Young's modulus shown in Figure 4.11, it exhibits a similar trend to
the previous result for the neat resin. Notably, the highest Young's modulus was achieved
in the y-20s sample. When comparing samples in the same direction, the difference
between the y-20s and y-4s samples is not substantial, as is the case with the z orientation
samples. However, the x orientation samples present a distinct pattern, with the x-12s
sample displaying a significantly lower Young's modulus compared to the others.
Conversely, the x-8s, x-8s, x-16s, and x-20s samples are closely grouped together. Further
analysis is required to understand the specific factors contributing to the observed

variations in Young's modulus among the different exposure times and orientations.
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Figure 4.10 The maximum tensile strength of the 0.1% w/w rGO composite resin is

displayed in MPa units, corresponding to the exposure time for the x, y, and z orientations.
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Figure 4.11 The Young’s modulus of the 0.1% w/w rGO composite resin is displayed in

GPa units, corresponding to the exposure time for the x, y, and z orientations.
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4.4.3 Mechanical properties of 0.1%w MWCNT composite resin

We are now able to conduct a comprehensive comparison of the mechanical
properties among the three types of resin. Based on the data presented in Figure 4.12, the
results for the maximum tensile strength align with our expectations, showing that MTS
increases with longer exposure times. It is worth noting that the y-4s sample yielded a
comparatively lower MTS of 8.35 + 0.44 MPa when compared to the other samples. On
the other hand, the x-16s and x-20s samples displayed MTS values of 15.2 + 0.89 MPa

and 14.78 + 0.43 MPa, respectively, indicating a minor difference between them.
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Figure 4.12 The maximum tensile strength of the 0.1% w/w MWCNT composite resin is
presented in units of MPa, corresponding to the exposure time for each of the x, y, and z
orientations.

The plot of Young's modulus for the 0.1% w/w MWCNT samples also follows the
trend observed for MTS, similar to other conditions. In Figure 4.13, the y-ds sample yields
the lowest modulus, measuring only 0.483 + 0.031 GPa, while the highest and averaged
Young's modulus was found in the z-20s sample, measuring 1.367 + 0.070 GPa. Additionally,
the x-20s sample exhibits a slightly lower Young's modulus of 1.008 + 0.090 GPa compared
to the x-16s sample, which yields 1.113 + 0.091 GPa. Overall, the results seem to align
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with the expected trend, demonstrating that Young's modulus is influenced by exposure

time and orientation, similar to the observations made for MTS.
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1.085

= 1.2 1.1113 I.¥0
& 1.608 1.g05 1 011 0.994 1-$9
< 0?7 BP 0?6 BE
= 0.771
2 08 0676 ? 0.715
% 0.6 0.483
” 04

0.2

0

4 8 12 16 20 4 8 12 16 20 4 8 12 16 20

Exposure time (s)

Figure 4.13 The Young’s modulus of the 0.1% w/w MWCNT composite resin is presented
in units of GPa, corresponding to the exposure time for each of the x, y, and z orientations.

4.4.4 Elongation at break

In this section, our focus is on examining the impact of printing conditions on the
elongation at break of the subject material. Elongation at break is a crucial parameter that
reflects the material's ability to withstand deformation under stress. It quantifies the
efficiency of the material in tolerating deformation, expressed as a percentage change in
stress relative to the applied force. By investigating the elongation at break under different
printing conditions, we aim to gain insights into how variations in the printing process can
influence the material's ability to withstand stretching forces and adapt to deformation.
Understanding this relationship is vital for optimizing the mechanical performance of 3D-
printed products, as elongation at break provides valuable information on a material's
ductility, resilience, and overall mechanical reliability.

According to Figure 4.14, the maximum percent elongation observed was 4.28 +

0.73%, while the minimum was 2.15 + 0.31%. The relatively low percentage of elongation
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suggests that this resin may not be a ductile material, as it exhibits limited ability to deform
under stress.

Moving on to Figure 4.15, which represents the rGO mixed samples, the minimum
and maximum elongation values were 1.97 + 0.12% and 3.32 + 0.31%, respectively.
Additionally, Figure 4.16, which depicts the MWCNT mixed samples, showed minimum and
maximum elongation values of 1.67 + 0.19% and 2.97 + 0.41%, respectively.

Based on these results, it can be inferred that the reinforced resin specimens may
not be as flexible as the normal resin, given their lower elongation values. However, it is
crucial to note that despite the reduced flexibility, the reinforced resin samples exhibited
higher strength, as evident from the results of maximum tensile strength (MTS) and Young's
modulus, indicating that the trade-off between flexibility and strength was balanced in

favor of enhanced mechanical properties.

Elongation at break of neat resin
For)

6

2,79 2.76

Fh

Elongation at break (%)
. ESS
w
1=
v
9
7
(]
)
—] N
[3=)
9
[
——
(o]
35
—
(%)
s
=
[§¥]
;"J
=
= — &
~]

%]

4 8 12 16 20 4 8 12 16 20 4 8 12 16 20

X y Z

Exposure time (s)

Figure 4.14 The plot represents the elongation at break corresponding to the exposure
time for each orientation of the neat resin samples. The data reveals that the maximum

percent elongation observed was 4.28 + 0.73%, while the minimum was 2.15 + 0.31%.
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Figure 4.15 The plot represents the elongation at break corresponding to the exposure

time for each orientation of the 0.1% added rGO resin samples.

L
n

2.5

Elongation at break (%)
(%]

Elongation at break of 0.1% MWCNT resin

2.87

=]
%}
-
=]
N
9
2
o
[+
(=
el
[
n
]

2.12 2.17

1.99 1.98

% qf h % —I— = R il _} 1.82

12 16 20 4 8 12 16 20 4 8 12 16

[

X ¥ z

Exposure time (s)

Figure 4.16 The plot illustrates the elongation at break for the 0.1% added MWCNT resin

samples, corresponding to the exposure time for each orientation.
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Furthermore, based on the results, we can conclude that the printing orientation
does not significantly affect the elongation at break. Although there is a slight indication
that the normal resin may exhibit slightly more elongation compared to the reinforced
resin, there is no discernible pattern to confirm a significant influence of the printing

orientation on this matter.



CHAPTER V
CONCLUSION

In this experiment, we delved into the mechanical properties and performance of
3D-printed samples using different resin compositions, exposure times, and printing
orientations. The goal was to analyze the effects of these parameters on the tensile
strength, Young's modulus, and elongation at break of the printed specimens. The
comprehensive exploration covered three types of resin: neat resin, resin with 0.1% w/w
reduced graphene oxide (rGO), and resin with 0.1% w/w multi-wall carbon nanotube
(MWCNT).

The EDS analysis highlights the challenges and opportunities in utilizing rGO for
composite 3D resin applications. While the oxygen and sulfur content offer benefits for
bonding and dispersion, the low carbon content and incomplete reduction may limit the
material’s full potential. Optimizing the reduction process or modifying the rGO structure
can address these limitations and enhance its performance in resin composites. The SEM
and EDS results suggest that the MWCNTSs, despite their bundled morphology, have the
potential to significantly enhance the mechanical properties of the composite 3D resin.
Their high carbon content ensures strong structural integrity, while the minimal oxygen
presence provides a balance between resin compatibility and retained intrinsic properties.
This makes MWCNTSs a promising reinforcement material for composite applications.

Through all experimentation and analysis, we observed various intriguing findings
and trends in the mechanical behavior of the printed samples. The tensile strength, a
crucial indicator of material strength and ability to withstand stretching forces,
demonstrated a consistent trend across all orientations and exposure times. Generally,

higher exposure times were associated with increased tensile strength, indicating improved
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material performance with longer printing periods. However, some exceptions were noted
in specific orientations, where certain exposure times exhibited unexpected behavior.

Similarly, Young's modulus, which indicates the material's stiffness and elasticity,
displayed consistent trends with respect to exposure times and orientations. We observed
that Young's modulus tended to increase with longer exposure times, suggesting a direct
relationship between exposure duration and the material's stiffness. Again, exceptions
were found in specific orientations, highlighting the significance of considering printing
orientation in optimizing material properties.

Elongation at break, a critical parameter reflecting the material's flexibility and
tolerance to deformation, provided valuable insights into the materials' ductility.
Interestingly, we noticed that the normal resin samples generally exhibited higher
elongation at break compared to the reinforced resin samples containing rGO and MWCNT.
However, we found no conclusive patterns confirming a significant influence of the printing
orientation on elongation at break.

Comparing the reinforced resin samples with the normal resin, we observed that
while the reinforced samples displayed reduced elongation, they exhibited improved
tensile strength and Young's modulus. This suggests a trade-off between flexibility and
mechanical strength, where the addition of rGO and MWCNT enhanced the material's
mechanical properties at the expense of some flexibility.

In summary, this study has shed light on the intricate relationships between
exposure times, printing orientations, and the mechanical properties of 3D-printed
samples. The findings have practical implications for optimizing the design and fabrication
of 3D-printed products, as they highlight the importance of selecting appropriate exposure
times and understanding the influence of printing orientation on mechanical performance.
Further investigations and refinement in resin compositions and printing parameters are
warranted to fully unlock the potential of 3D printing in various engineering and scientific
applications.

Overall, this comprehensive exploration contributes valuable knowledge to the

field of 3D printing and materials science, opening new avenues for advancing additive
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manufacturing technologies and expanding the horizons of innovative product

development.
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APPENDIX A
THE STRESS-STRAIN CURVE OF EACH CONDITION
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Stress-Strain Curve for Specimen GO-Y4_3
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Stress-Strain Curve for Specimen GO-Z8 3
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Stress-Strain Curve for Specimen GO-720_6
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Stress-Strain Curve for Specimen CNT-X16_2
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Stress-Strain Curve for Specimen CNT-Y12 4
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Stress-Strain Curve for Specimen CNT-Y16_3
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Stress-Strain Curve for Specimen CNT-Y20_2
—— Stress-Strain Curve
14 Linear Fit (E = 10.66 MPa)
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Stress-Strain Curve for Specimen CNT-Z4 1
——  Stress-Strain Curve
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—— Stress-Strain Curve
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Stress-Strain Curve for Specimen CNT-Z12_5
—— Stress-Strain Curve
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MECHANICAL PROPERTIES OF GRAPHENE
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Abstract

Vat photopolymerization 3D printing, including LCD 3D printing, is a versatile method for
the fabrication of complex structures with numerous applications. The aim of this study was to
investigate the potential of graphene nanoplatelets (GNP) as an additive for improving
the mechanical properties of carbon-filled composite resin for LCD 3D printing. Tensile testing was
conducted on the 3D printed samples using the ASTM D638 type V standard model. The results
indicated that adding 0.1% w/w GNP with 20 scc of exposure time increased the clastic modulus of
the specimen from 7.31x1.02 MPa to 9.38+0.37 MPa for x-orientation (horizontal) and from
7.62+0.93 MPa to 9.58+0.61 MPa for y-orientation (vertical). Furthermore, the maximum tensile
strength increased from 3.87+1.13 MPa to 5.28+0.73 MPa for y-orientation and from 4.06+0.92 MPa
to 5.49+0.49 MPa for x-oricntation. These results demonstrate the efficacy of GNP as an cffective
additive for enhancing the mechanical properties of carbon-based composite resin in LCD 3D
printing.

Keywords: Composite resin; graphene nanoplatelets; LCD 3D printing; mechanical properties;
vat photopolymerization

Introduction

Three-dimensional (3D) printing, also known known as mask stereolithography (MSLA), has

as additive manufacturing, has emerged as
a transformative technology in the manufacturing
industry due to its capability of producing complex
geometrics with high precision and accuracy
(Abdollahi ef al., 2018; Shahrubudin ef al., 2019).
Among the different 3D printing technologies,
liquid crystal display (LCD) 3D printing, also

gained significant attention due to its high resolution
and accuracy (Lee et al., 2017; Malas et al., 2019).
However, the mechanical properties of the printed
objects using LCD 3D printing arc often limited
by the brittleness of the resins used. To address
this challenge, rescarchers have been cxploring
the incorporation of various additives into the resins

1 School of Physics, Institute of Science, Suranaree University of Technology, 111 University Ave, Muang District,

Nakhon Ratchasima, 30000 Thailand. E-mail: Chanwit.paart(@,

il.com; w. i Dg.sut.ac.th

2 Center of Excellence on Advanced Functional Materials, Suranaree University of I'eclmalbgy, 111 University Ave, Muang District,

Nakhon Ratchasima, 30000 Thailand.
* Corresponding author

DOI: htips://doi.org/10.55766/sujst-2023-05-03020
Suranaree J. Sci. Technol. 30(5):030149(1-5)

116



030149-2  Mechanical Properties of Graphene Nanoplatelets Composite Resin Fabricated By 3D Printing Technique

to improve the mechanical properties of the printed
objects. In particular, the incorporation of carbon-
based nanomaterials, such as graphene nanoplatelets
(GNP), has shown great promise in enhancing
the mechanical properties of various materials,
including polymers, metals, and ceramics.

Graphene, a single layer of carbon atoms
arranged in a hexagonal lattice, is known for ils
exceptional mechanical, thermal, and electrical
properties (Lim ef al., 2017; Hanon et al., 2021).
GNP, a form of graphene produced by cxfoliating
graphene layers [rom graphite, possesses many
advantages over other forms of graphene, such as
high aspect ratio, low cost, and ease of production
(Feng et al., 2019; Markandan et al., 2020). The
incorporation of GNP into the resins used in LCD
3D printing has the potential to significantly
enhance the mechanical propertics of the printed
objects.

In this study, we investigate the effectiveness
of incorporating GNP into a UV-curable resin used
in LCD 3D printing to enhance the mechanical
properties of the printed objects. UV-curable resins
arc widcly used in LCD 3D printing duc to their
fast-curing time, low shrinkage, and high resolution.
However, the mechanical properties of the printed
objects using UV-curable resins are often limited.
Through a systematic charactcrization of the
mechanical properties of the GNP-reinforced
UV-curable resin, we aim to provide insights into
the underlying mechanisms of the reinforcement
effect and identify optimal processing conditions
for the LCD 3D printing of high-performance
objects. The study contributes to the field of vat
photopolymerization by providing valuable insights
into the enhancement of mechanical properties,
specifically the elastic modulus and tensile strength,
of 3D printed parts. Understanding the impact of
GNPs on the resin matrix helps in the development
of optimal printing parameters and conditions
for compositc materials, thereby advancing the
application of vat photopolymerization 3D printing
technology.

Methodology

This section provides a detailed account of the
materials and equipment used in this research, along
with the sample preparation, cxperimental and
testing methodologies.

Matcrial and Printer

The material used in this study was
Puffcromer3D resin (Hard) as the basc matcrial and
Graphene nanoplatelets (GNP) obtained [rom
Graphene Technology Co. Ltd. (Thailand) as the

reinforcing material. The resin was stored in a cool,
dry place to prevent contamination. The 3D printer
used in this study was the Elegoo Mars LCD 3D
printer. The printer was calibrated and the build
platform was leveled prior to printing.

Preparation and Printing Conditions

The printing conditions were varied to
investigate their ecffects on the mechanical
properties of the printed samples. The layer height
was set to 0.05 mm, which is the highest resolution
available on the Elegoo Mars LCD 3D printer. The
exposure time was varied between 10, 20, and 30
scc for both the normal and GNP added resins. The
concentration of GNP in the resin was 0.1% w/w.
As shown in Figure 1, the printing oricntation was
varied between horizontal (x) and vertical (y) for
each exposure time. After printing, the samples
were post-exposed for 90 sec to ensure complete
curing.

Figure 1. Printing orientation of specimens in
horizontal (x) and vertical (y) axes,
as shown in (a) and (b), respectively

63.5mm

Y \ iH I P
320 mm = 7 . m—

Figure 2. Demonstration of the dimensional
schematic of the ASTM D638 Type V
model utilized for tensile testing

Tensile Testing

Tensile testing was performed on an UTM
Instron 5565 machine, which is capable of applying
forces up to 100 kN. ASTM D638 type V standard
model was used for the tensile testing, as in Figure
2. ASTM D638 is a standardized test method that
outlines the procedures for evaluating the tensile
propertics of plastics and other resin materials
(Kumar and Narayan, 2018). The test method
provides guidelines for the preparation of the
specimens, including their shape and size, as well as
the testing apparatus and conditions. Specifically,
the test involves using a dumbbell-shaped specimen.
The test procedure involves subjecting the specimen
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to a tensile force until it fractures, while monitoring
the load and displacement. The test measures
a range of mechanical properties including ultimate
tensile strength, yield strength, clongation at break,
and elastic modulus. These properties can be used to
assess the strength, stiffness, and ductility of the
material, and can be uscful for matcrial sclection,
design, and quality control purposes (Harding and
Welsh, 1983). The accuracy requirements for the
test frames and accessories used are also outlined in
the standard, cnsuring that the results obtained from
different laboratories are comparable. In this work,
the samples were placed in the UTM Instron 5565
machine and tested at the speed of 1 mm/min.
The tensile testing was conducted until the sample
broke, and the maximum load and elongation at
break were recorded.

Result and Discussion

The obtained results revealed that the elastic
modulus of the resin composile increased with
exposure time, as illustrated in Figure 3(a).
The solid and stripe plots in Figure 3(b) represent

the printing orientation of the specimens in the x and
y axes, respectively. Interestingly, no significant
difference was observed in the elastic modulus
between the two printing orientations. These
findings suggest that exposure time is a more critical
factor than printing orientation in enhancing
the clastic modulus of the resin composite.
Furthermore, the data from this study provides
valuable insights for the development of optimal
printing parameters and conditions for the
fabrication of compositc matcrials using 3D printing
technologies. Additional experiments can be
conducted to further validate these findings and
optimize the printing parameters for different
composite materials.

Moreover, the effect of adding 0.1% w/w
graphene mixed resin on the mechanical properties
of 3D printed specimens was investigated. The
results, as shown in Figures 4(a) and 4(b), indicate
that there was a significant increase in elastic
modulus and maximum tensile strength [for
specimens printed in the x-axis with 20 sec of
exposure time.

The clastic modulus of the specimens
increased by 28.3% while the maximum tensile

(@) Elastic modulus

X

Exposure time (s)

Maximum tensile strength

-
N

Figure 3. Plot of (a) elastic modulus and (b) maximum tensile strength over exposure time for both horizontal

(x) and vertical (y) printing orientation

(@)  Elastic modulusloffognalVEIGNRs added resia

—
i
~

Maximum tensile strength
of normal vs. GNPs added resin

s49 528

406 387

Figure 4. (a) Comparison of elastic modulus between normal resin and resin with added GNPs, with 20 sec of

exposure time, for horizontal (x) and vertical (y) printing orientations. (b) Comparison of maximum
tensile strength between normal resin and resin with added GNPs, with 20 scc of exposure time,
for horizontal (x) and vertical (v) printing orientations
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strength increased by 36.4%. This suggests that
graphene nanoplatelets have a reinforcing effect on
the composite material, resulting in improved
mechanical properties.

The results also showed that there was no
significant difference in mechanical properties
observed between the x-axis and y-axis printing
orientations. However, some studies have reported
that printing orientation can indeed have an impact
on the mechanical properties of 3D printed parts.
The obscrved increase in load-bearing capacity
before ultimate failure can be attributed to the
angled arrangement of the print layers relative to the
applied load. This structural configuration enhances
the ability of the printed parts to withstand higher
loads, resulting in improved mechanical
performance (Saini ef al., 2020). While our study
did not observe a significant difference in
mechanical properties between the x-axis and y-axis
printing orientations, it is worth noting that printing
orientation can play a role in cerlain cases.
The effect of printing orientation on mechanical
properties can be influenced by factors such as
the part gcometry, layer adhesion, and anisotropic
material behavior. It is possible that the specific
resin matrix and GNPs used in our study mitigated
the influence of printing orientation on the elastic
modulus of the compositc matcrial. However,
further investigations and specific experimental
conditions may be required to fully understand
the interplay between printing orientation and
the mechanical properties of 3D printed parts in
the context of resin composites with GNPs.

Overall, the addition of graphene nanoplatelets
to the resin can be an effective method for
improving the mechanical properties of 3D printed
parts, which can be useful in various applications
including acrospace, automotive, and biomedical
industries. For instance, in the aerospace industry,
these improved characteristics can contribute to
the development - of lightweight and durable
components, leading to increased [uel elficiency
and overall performance of aircraft systems. In the
automotive sector, the augmented mechanical
propertics cnable the production of stronger and
more reliable parts, enhancing the safety and
longevity of vehicles. Similarly, in the biomedical
field, the heightened mechanical properties offer
opportunitics for fabricating paticnt-specific
implants with superior strength and durability,
thereby improving the success rates and longevity of
medical interventions. The enhanced performance
of these 3D printed parts holds great promise for
advancing technological innovations and meeting
the stringent requirements of these industrics.

Conclusions

In conclusion, this study investigated the effect of
adding graphene nanoplatelets (GNPs) to the resin
for 3D printing of carbon-based composite materials
using vat photopolymecrization. The results showed
that the addition of GNPs led to an increase in both
elastic modulus and maximum tensile strength of
the printed specimens. Specifically, the specimens
printed in the x-axis with 0.1% w/w graphenc mixed
resin and 20 sec of exposure time showed the highest
increasce in both clastic modulus and maximum
tensile strength. These findings demonstrate the
potential of vat photopolymerization 3D printing
for the production of graphene nanoplatelets
composite materials with improved mechanical
properties.
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