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CHAPTER I

INTRODUCTION

The mystery of the universe is always a fascinating topic for humankind. The

most popular theory that describes the starting point of the universe is known as “the

Big Bang Theory”. Only a few second, after the big bang, matter was in a state of the

extremely hot and dense fluid, designated “Quark­Gluon Plasma (QGP)”. Due to high

temperature and density, quarks are not allowed to bind together to form hadronicmatter.

We call this stage “quark epoch”. The quark epoch lasts only a few milliseconds until

the average energy of particle interaction is below the binding energy of hadrons. In

particular following periods are known as “hadronic epoch”, When quarks are confined

together within hadrons. The change of state of a strongly­interacting matter can be

described by a QCD phase diagram. Theoretically, we use the QCD phase diagram to

make sense of how QGP transit to the hadronic state, as shown in figure 1.1.

Heavy­ion collision experiments have been constructed to investigate the QCD

phase diagram. The confirmation of QGP’s existence was formally announced in 2010

by CERN’s Super Proton Synchrotron (SPS) as “indirect evidence for a new state of

matter” (Abbott, 2000). For the investigation of QGP properties, nuclei colliding exper­

iments have been conducted in a various range of energies such as STAR (M. Aggarwal

et al., 2010), PHENIX (Adcox et al., 2004), and NA61/SHINE (Abgrall et al., 2014).

The nuclear collisions at relativistic beam energies are an abundant source of

particles created by the strong interaction. These particles and their correlations, in

principle, carry information on the properties of matter in which they were created. The

goal of all the existing and planned heavy ion experiments is to understand these prop­

erties and untangle the phases of matter from particle information that is measured in
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Figure 1.1 Theoretical picture for visualizing QCD­phase diagram. The vertical axis
represents temperature. The horizontal axis represents the baryon chemical potential,
which indicates the imbalance between matter and antimatter. At zero of baryon chem­
ical potential, the crossover region is expected to be found. The first­order phase tran­
sition is expected at a higher temperature and baryon chemical potential. The critical
point is expected to be found at the end of first­order phase transition Gronefeld, 2018.

the detectors. In many cases, new and interesting physics is hidden in rare events and/or

rare particles as well as the correlations between these particles. Such is the case in

the detection of new heavy particles, properties of charmed hadrons and higher order

cumulants of particle multiplicity distributions.

To find and learn more about such rare probes, new experiments, like the CBM

experiments at the upcoming FAIR facility, the NICA facilty and the ALICE experiment

at CERN, will be able to produce a huge amount of events every second. Since the

amount of data generated in such events is very large, one has to find new methods to

be able to find and classify new events very rapidly online in order to save the events

for later in­depth analysis. For such scenarios, it is very useful to have a model at hand

which is able to quickly and reliably determine whether an event contains any interesting

information or is simply worthwhile to be saved on disk for later investigation.
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Another challenge related to huge amounts of experimental data is related to

possible interesting physics from a statistical analysis. A prominent example hereby is

the analysis of the proton number multiplicity distribution as a function of beam energy

by STAR at RHIC. In Au+Au collisions at
√
s = 7.7 GeV, a significant deviation from

a simple binomial distribution has been reported, which some interpret as a signal for

a critical endpoint in the QCD phase diagram (Luo, 2016). As discussed in a previous

work, this observation can be explained by a two peak anomaly in the proton number

distribution (Bzdak et al., 2018). At the moment, however, the cause for such a two­

bump distribution is unknown, possibilities include an experimental artifact or the effect

of the QCD phase transition.

To find the actual source, a careful analysis of the events responsible for that

distributionmay be useful, which requires the identification of the corresponding events.

If, for example, an imperfect centrality determination, a completely different event type,

or even a detector malfunction would be responsible, characteristics of those events

should be different from those of the bulk. Such events are called outliers.

In recent years, the detection of outliers has been an essential goal in the

machine­learning community, see e.g.(Hawkins, 1980). In the present work, we will

show how modern machine­learning (ML) methods can be applied to the detection of

outliers in the context of high energy nuclear collisions. In particular, we will focus

on collisions of gold nuclei at a center of mass energy of 7.7 GeV per nucleon due to

the previously mentioned observation of interesting fluctuations and correlations. Our

work here can be understood as a suggestion for an extended experimental analysis of

that particular beam energy.

In general, however, the presented methods are applicable to outlier detection in

various nuclear collision experiments and are not at all restricted to the specific example

discussed in the following. Machine learning tools have nowadays become essential to
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face experimental challenges in high­energy physics, with applications ranging from

track finding at PANDA (Esmail et al., 2019) to b­jet tagging and the measurement of

low­mass dielectrons at ALICE (Haake, 2017).

Nowadays, there are breakthrough developments in artificial intelligence (AI)

both in the scientific field and industry. There are many real­world applications that

guarantee the success of the AI field, such as a self­driving car, fraud detection, speech

recognition, etc. Machine Learning (ML) is like a primary part of AI. We can think

of AI as intelligent systems that simulate human intelligence while ML is the way that

intelligent systems extract knowledge from data. After the model has learned enough

it will be able to apply knowledge to unseen data to make a decision. In this work, we

will develop machine learning algorithms, including Principle Component Analysis and

Autoencoder, to investigate outlier detection tasks in a nuclear collision.

 



CHAPTER II

PHYSICS OF QUARK­GLUON PLASMA

The fundamental particles, known as hadronic matter, such as proton, neutron,

and pion, are states of confined quarks and gluons. These can be studied under the con­

cept of symmetry of the strong interaction through quantum chromodynamics (QCD),

the theory of strong interaction between quarks and gluons. In the limit of vanishing

quark masses, the state at high temperature/density, the chiral symmetry of QCD is

restored. This process is known as “a restoration of chiral symmetry” where quarks

and gluons are confined together by the strong force corresponding to Pauli exclusion

principle. When the chiral symmetry is broken, the current quark mass becomes finite.

However, If we consider the sum of the quark masses in a hadron, it is significantly

smaller than the mass of hadron itself. The major goal of the ultra­relativistic heavy­ion

experiments is to create and study a system of restored chiral symmetry, or the plasma

state of quarks and gluons.

In this chapter, we will discuss idea and concept of QGP and the phase transition

between QGP and hadronic matter

2.1 Properties of quark and gluon

Quark (Q) and gluon (G) are subatomic particle which are confined under the

strong force to form particles we know as hadrons. The subatomic particles have prop­

erties:

There are six different flavors of quarks as shown in table 2.1 including up (u),

down (d), strange (s), charm (c), bottom (b) and top (t). u­quark and d­quark are the most
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stable version of all flavors. In addition to the stable version, there are also unstable

versions, including c­quark and s­quark and t­quark and b­quark. With the short life

span, they will decay to more stable versions. Qq indicates the electric charge carried

by each quark flavor.

Table 2.1 Properties of quarks with different flavors are shown here. Q indicates the
charge of each flavor,mf denotes the mass of each flavor.

flavor Quark Q mf (2GeV)

u Up +2
3

3.5 ± 2 MeV
d Down −1

3
6 ± 3 MeV

s Strange −1
3

115 ± 55 MeV
c Charm +2

3
1.25 ± 0.15 GeV

b Bottom −1
3

4.25 ± 0.15 GeV
t Top +2

3
174.3 ± 5.1 GeV

Quarks must have an additional quantum number aside from spin called color

because they are fermions which should be subject to the Pauli principle *. The particles

such as∆++ = (uuu),∆− = (ddd), and Ω− = (sss) can be described according to the

Pauli principle with 3 additional degeneracy factor † including red, green, and blue.

Gluons are different types of particles known as “Gauge Bosons”. They me­

diate the strong interaction between two or more quarks. It is usually been described

analogously with photon that are considered as intermediate between charge particles.

2.2 Quark Gluon Plasma (QGP)

Go back to the universe’s beginnings; 10 µs after the Big Bang, it was believed

that the universe was filled with a thermalized plasma of deconfined quarks, antiquarks,

*Pauli principle states that there is no two or more identical fermions (particles with half­integer spin)
occupied the same quantum state within a quantum system simultaneously.

†If we account for anti­particle, then we have three more colors, including anti­red, anti­green, and
anti­blue.
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gluon and leptons (and other, heavier particles) ­ a Quark­Gluon Plasma (QGP). Af­

ter hadronization of this QGP, it took another 3 minutes until the first small nuclei

were formed from protons and neutrons called “primordial nucleosynthesis and chemi­

cal freeze­out”, another 400,000 years until atomic nuclei and electrons could combine

to form electrically neutral atoms, thereby making the Universe transparent and liberat­

ing the Cosmic Microwave Background. To study the physics of QGP could imply the

history of the universe and get the clues of how the matters were formed.

Atomic nuclei of lead are accelerated and collided to create an environment

which existed only fractions of a second similar to what claim as the “Big Bang”. Some

physicists called these experiments “Micro Bang” (or “Little Bang”). The table 2.2

shows the differences between the two.

Table 2.2 The table makes a comparison between the Big Bang and micro bang. The
time scale of the plasma expansion of a micro bang is less than of the Big Bang due to the
gravitational force effect. In the laboratory, a considerable baryon number B is produced
compared to total particle number Nb unlike in the early Universe. A significant of
matter­antimatter asymmetry is expected to found in the micro bang. Where τ time
interval during QGP evolution. And Nb and N are the production number of baryon
and total particles respectively.

Big­bang Micro­bang
τ ≃ 10µs τ ≃ 4× 10−17µs
Nb/N ≃ 10−10 Nb/N ≃ 0.1
gravitational force effect no gravitational force effect

In 1987, Leon van Hope, proposed the term “quark gluon plasma” (Van Hove,

1987). If the temperature is above Hagaedorn temperature, the scale of u/d quark mass,

and the pressure exhibits the relativistic Stefan­Boltzmann, quark and gluon are freed

frommass constituents. And indeed, in year 2000, quarks and gluons were first detected

in the laboratory at CERN (Heinz et al., 2000)(Glanz, 2000).

The experiment of colliding particle creates hot and dense fireballs (QuarkGluon

Plasma or QGP) that evolve through the transforming process. They found that gluons

bind quarks together, acting as an exchange particle for the strong force to form hadrons
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such as protons and neutrons. The process was called “hadronization”.

We use the simple transparent model of a heavy­ion collision to describe the

mechanism of creating QGP and its evolution as in figure 2.1. First, the two nuclei of

heavy­ion are accelerating to near the speed of light along the beam direction. They both

got affected by Lorentz contraction into a disk­like shape. The factor γ = Ebeam/M

indicates the magnitude of contraction, whereEbeam is the beam energy per nucleon and

M = 0.94 GeV is nucleon mass. γ is approximately 110 and 3000 at the respective top

energies of RHIC and LHC. When both nuclei collide, neutrons and protons dissolve

into the state of deconfined quarks and gluons. To guess what happens to them inside,

one needs to draw a conclusion that QGP was finally transit to the hadronic matters

at low temperature and baryon chemical density. The QCD phase diagram is used to

describe the possibility of the phase transition from QGP to hadron gas. Many impor­

tant probes are investigated (Luo, 2016), such as freeze out condition, nuclear modifi­

cation factor Rcp, and net­proton number fluctuations, which we will review some of

them in the future chapter. The crash produces so many thousand particles spread out

with information about what happened inside. Physicists call the spread­out particles

as asymptotic particles and study them actively. To scope down a little bit, we mainly

focus on the strongly­interacting matter. The nature of quarks and gluons is themselves

never been observed as free objects. In a normal state, they are confined. Only in the

situation of a high­energy interaction can we see them separately for the short instant

of time. Moreover, quarks and gluons interact only with a strong force, which is a vast

experimental challenge regarding study their properties.

During the early collision, the system produces a large amount of heat in a tiny

region, causing a huge energy density rapidly. The QCD process and interaction in

high energy regions produce cascades of radiation called a parton cascade or a parton

shower. The temperature keeps increasing up to the limit that the nucleus is melted at
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Figure 2.1 (a) The two nuclei of heavy­ion are accelerating to near the speed of light
along the beam direction. They both got affected by Lorentz contraction into a disk­like
shape. (b) Protons and neutrons dissolve for a brief instant, liberating their constituents
(quarks and gluons) to form a Quark­Gluon­Plasma (very hot and dense fireball). (c)
They both collide, the nuclei of neutrons and protons dissolve into the state of deconfined
quark and gluon. The intermediate plasma with extremely low viscosity, behaves like a
perfect fluid. (d) The crash produces thousand of particles spread out to the detectors.
[ref: MADAI collaboration, Hannah Petersen and Jonah Bernhard]

τ0. It behaves like a perfect fluid with extremely low viscosity. At this point, we can

call the unconfined color charged with gluon as quark­gluon plasma (QGP). The QGP

around the center of mass of the collision keep expanding cause the temperature to cool

down near the equilibrium this process known as “Thermalization”. With an increase

in strength of the strong force, the QGP plasma of weakly interactive quarks gets re­

placed with the more familiar hadronic phase in which quark appears bound in baryons

and mesons. This phenomenon is called confinement. At this stage, the phase of mat­

ter changes from the QGP phase to the hadronic phase. At some time, τf , the hadrons

will cease to interact and stream freely into the detector where they are measured. The

process known as “freeze­out”. More precisely, there are two types of freeze­out: first

comes the chemical freeze­out, after which no inelastic collisions occur anymore, re­

sulting in the fixed chemical composition of the system. Then, at the moment when
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elastic collisions cease as well, one speaks of a thermal or kinetic freeze­out. From the

definition, it is clear that the chemical freeze­out will happen before the kinetic freeze­

out (Herold, 2017). The evolution of QGP are shown in the figure 2.3. The figure 2.2

shows the evolution of QGP.

Figure 2.2 The figure shows the evolution of QGP starting from the colliding nuclei,
parton cascade, thermalization, QCD phase transition, and freeze­out. The evolution is
plotted corresponding to space­time diagram (Shi, 2010).

2.3 The QCD phase diagram

During the phase of QGP evolution, the freeze­out dynamics are important bulk

properties of the hot and dense nuclear matter. It maps out the regions where we can

access in the QCD phase diagram, which provides a baseline for finding the QCD phase

transition and critical point. A careful comparison between experimental data and the

results from the lattice gauge theory calculations, the scientists concluded that the transi­

tion temperature (expressed in units of energy) begins at 175 MeV (175 million electron

volts) (Bicudo, 2010). The exploration of QCD can be drawn as in figure 2.3. For a

small net baryon density region, it is expected to found a crossover of the chiral transi­

tion while evidence for a critical point (CP) and first­order phase transition are expected
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to locate at the regions with large values of net baryon density. If indeed a first order

phase transition occurs at large net baryon densities and intermediate temperatures, also

an associated end point must exist at which the transition becomes second order. Theo­

retical assumption claim that first and second order phase transitions give rise to many

interesting phenomena, especially related to fluctuations which we will discuss in the

next section (Koch et al., 2013).

Figure 2.3 The figure shows the various region of the QCD phase diagram indicated by
the temperature T [MeV] and the net baryon density n/no. Many of them had explored
by experiments in the nuclear collision and had investigated theoretically, including
RHIC­BES, NICA, and Nuclotron­M as labels in the figure. The phase transition lies
in between two­phase of matter, hadrons and quark­gluon plasma. (Bicudo et al., 2011)

2.4 Experimental Probs, Net­Proton Number

Fluctuations of conserved quantities, such as net baryon number (B), had been

proposed as a sensitive probe to search for the signature of a QCD critical point in heavy­

ion collisions (Asakawa et al., 2009). In the final state of fluctuation, the relations be­

tween the number of proton and baryon has been explored (Kitazawa et al., 2012). It is

shown that the correlations between the isospins of nucleons in the final state are almost
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negligible over a wide range of collision energy. Net­proton number can be used as the

approximation of net­baryon. By varying the beam energy of the collision, one is able

to change the density and temperature of the created system, which allows to “scan” the

phase diagram of QCD and hopefully locate the onset of phase transition signals. The

STAR experiment has measured the energy dependence of Cn up to fourth order of the

net­proton multiplicity distribution from Au+Au collisions with a larger acceptance of

pT , 0.4 < pT < 2.0 GeV/c (Adam et al., 2021). The results have been presented at 9

different collision energies√sNN = 7.7, 11.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV.

Figure 2.4 Energy dependence of correlated cumulant ratios C4/C2, C3/C2 and C2/C1

of Net­proton, Proton and Anti­proton distribution in Au+Au collisions at 0­5% most
central. The cumulant ratios are plotted against Rapidity Cut ymax (Abdallah et al.,
2021) for various collision energy, √sNN = 7.7, 11.5, 19.6, 27, 39, 54.4, 62.4 and 200
GeV.

Figure 2.4 shows the corrected cumulant of C4/C2, C3/C2, and C2/C1 of Net­

proton, Proton and Anti­proton distribution in Au+Au collisions measured by STAR.

The measurements are measured with transverse momentum 0.4 < PT < 2 GeV/c and

at mid­rapidity |y| < 0.5. The cumulant ratios, C4/C2 and C3/C2, show a clear non­

monotonic variation with √sNN for 0­5% centrality with collision energy √sNN = 7.7

GeV. Above 39 GeV, only the C4/C2 deviates from monotonic trends. One may note

that this is only statistical errors shown in the figure, which are still large due to limited

statistics. The systematical errors, which are dominated by the efficiency correction and

the particle identification, are being studied.

 



CHAPTER III

MACHINE LEARNING

These days, the tremendous increase of data exceeds the human effort to make

use of it. Due to the potential of learning a large amount of data, Artificial Intelligence

(AI) has been used in many areas. AI can be understood as a branch of computer science

concerned with building smart machines capable of performing tasks that typically re­

quire human intelligence. The core part of AI is known as machine learning. It uses the

statistical method to learn from data and improve with experience. Roughly, machine

learning methods can be classified into 2 groups:

• Supervised learning is the machine learning that learns from examples of input

and human­labeled output pairs. We call this training data or training example.

In supervised learning, each example is a pair consisting of an input object (typi­

cally a vector) and a desired output value (also called the supervisory signal). A

supervised learning algorithm analyzes the training data and produces an inferred

function, which can be used for mapping new examples. An optimal scenario

will allow for the algorithm to correctly determine the class labels for unseen in­

stances. This requires the learning algorithm to generalize from the training data

to unseen situations in a “reasonable” way.

• Unsupervised learning is a type of machine learning that looks for previously

undetected patterns in a data set with no pre­existing labels and with a minimum

of human supervision. In contrast to supervised learning, unsupervised learning,

also known as self­organization allows for modeling of probability densities over

inputs.
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Outlier or anomaly detection is the task of detecting instances that deviate from

a typical scenario or are an unlikely result of a random deviation from the expectation

value. Anomaly detection has a wide range of applications e.g., email spam detection,

fraud detection for credit cards, etc. In scientific fields and especially experimental data

analysis, outlier detection has been used successfully (Esmail et al., 2019).

The scope of this work is restricted to unsupervised learning. We will investi­

gate outlier detection tasks in nuclear collision physics in an unsupervised manner. The

coding algorithms applied include Principle Components Analysis (PCA) and Autoen­

coder (AEN). Since these algorithms have different learning processes, one is a linear

approach, and another one is a non­linear approach. We use python to develop an unsu­

pervised (deep­) learning algorithm along with scikit­learn and keras packages together

as a framework in this study.

3.1 Principle Component Analysis (PCA)

The Principle Component Analysis (PCA) is a statistical procedure that gener­

ates a low­dimensional representation of a dataset by an orthogonal linear transformation

of the original data. The PCA transforms the original n coordinates of one input dataset

into a new set of m coordinates called principal components (PC). These components

are chosen to represent the data by maximizing the variance of the data in the new set

of m < n dimensions. The first axis of PC is selected from the set of lines that pass

through the origin of the original n coordinates, and it must be the axis that preserves the

most variances of the dataset. So it has to maximize the distance of the projection point

(from the origin) of the dataset. For the second axis of the PC, it must be orthogonal

with the first axis and also maximizes the distance of the projection point. The other

principle components are created in the same pattern. They must be orthogonal and be

the line that preserves the most variance of dataset, figure 3.1 shows the example of it.
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We proceed with these following steps to find the principle components:

Figure 3.1 The picture shows the example of transformed axis of PCA. The transformed
vectors, red and blue, are orthogonal to each other. Both preserve the most variance of
datasets

1. Standardization: Calculate the mean (µ) of all numeric features (x) of the target

datasets. Translate x by µ. Scale the data by a factor of the standard deviation of

target datasets, σ. Each variable will contribute equally to analysis.

z =
x− µ

σ
(3.1)

We can represent a single sample with the vector Z⃗ that contain z1, z2, ..., zm.

Where m is the number of features.

2. Covariance matrix computation: We can compute the covariance of any two ran­
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dom variables zj and zk using the following formula:

A ≡ cov(Zj, Zk) =
1

n− 1

n∑
i=1

(Zj
i − Z̄j)(Zk

i − Z̄k)T (3.2)

Using equation (3.2), we will get the covariance matrix, A. The matrix A will

be used in the next step. The result of the covariance matrix would be a square

matrix of Zj×Zj dimensions (or Zk×Zk dimensions). Zj and Zk are the matrix

of two random variables, zji and zki . Where zi represents the ith sample of z. j and

k are labels of correlated features, analogously to height and width for example.

3. Compute eigenvectors and corresponding eigenvalues: Using the relation of

Eigenvectors and corresponding eigenvalues in the equation (3.3) to find the set

of pairs of an Eigenvector and its Eigenvalue.

AZ⃗ = λZ⃗ (3.3)

4. Choose the k eigenvectors with the largest eigenvalues: Sort the eigenvectors with

respect to their decreasing order of eigenvalues, choosing k out of them, where k

is the number of dimensions you wish to have in the new dataset.

In this work, we implement the PCAwith a varying number of PCs to investigate

the performance of outlier detection as a function of the number of PCs. We are not

going to fine­tune the best number of components because, for all practical purposes,

the algorithms need to be varied individually to find the proper set of parameters for the

specific task at hand.

Having generated the original event­by­event momentum features and then used

the PCA to reduce their dimensionality tom dimensions, there are twomethods available

to find outliers based on the output of the PCA.
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The first one is to make a so­called radius comparison (RC). The radius (dis­

tance from the origin) of each data point, in the new principal components, is calculated

as:

r(i) =
√

X2
PC1

(i) +X2
PC2

(i) +X2
PC3

(i) + ..+X2
PCm

(i) , (3.4)

where XPC are the coordinates of the new m−dimensional principal compo­

nents and (i) refers to a single event.

Using the PCA radius will help later to visualize how outliers and background

are distributed in configuration space (space where they are represented by principle

coordinates in a lower dimension).

The second method used to identify outliers is to calculate the reconstruction er­

ror (RE) of the reduced representation. The reconstruction error quantifies the error that

occurs when an input feature vector is projected on the new reduced set ofm dimensions

and then is reconstructed from the reduced dimensions to the original dimensionality.

One could also say it quantifies the information loss that occurs for a single instance by

performing the PCA.

We can calculate the reconstruction error of any ith event as:

RE(i) =
1

N

(
N∑
j=1

[
Xrecj(i)−Xj(i)

]2) 1
2

(3.5)

Where

• N is the number of dimensions of the input data.

• Xj(i) is the jth component of the ith input event. Usually one sums over all N

components/dimensions of the input event.
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• Xrecj is the jth component of the ith reconstructed event.

When we reduce the dimensionality of data while keeping a significant por­

tion of the information in the principal components (as defined as the components with

the largest variance), the reconstruction loss is expected to differ between two types of

events (outliers and background). Therefore, the properties of the reconstruction error

can be used as an indicator to detect an anomaly.

3.2 Autoencoder (AEN)

Autoencoders (AEN) are deep artificial neural networks that learn to reduce the

dimensionality of input data. They follow a similar encoding­decoding strategy as PCAs

but are not limited to linear projections of the input data; thus, they can deal with more

complex input. An AEN has been shown to also successfully denoise input data, which

makes them very useful for the study of nuclear collision data. In an AEN, there are

usually 3 components and 1 evaluator working together:

1. The encoder is the network part that learns how to reduce the dimension of the

input data and compresses it into an encoded representation.

2. The Bottleneck (Hidden features, encoded representation) is the part that contains

the dimensionally reduced representation of the input data. This part tries to pre­

serve as much information as possible from the original input data.

3. The Decoder is the part that decodes the bottleneck/hidden representation back to

the output data, preserving as much significant information from the input data

as possible. The output of the Decoder has the same dimensionality as the input

data; in an ideal case, it is an almost perfect copy of the input.

4. The Reconstruction Loss (reconstruction error) is an indicator that measures how
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Figure 3.2 The picture shows the main components of AEN, including encoder, bottle­
neck, and decoder. The AEN learn to encode number 2 as the input data and keep it
in encoded representation or the bottleneck. Finally, the decoder reconstructs data back
base on information kept in the bottleneck. Reconstruction loss has been calculated to
measure efficiency.

well the output resembles the input and thus has been reconstructed from the hid­

den representation.

One can applymany types of architectures such as convolutional neural networks

and fully­connected neural networks for the encoder and decoder parts of the network

depending on which structure most efficiently can encode essential features of the input

data. These different architectures are explained in more detail in the subsection 3.2.2

and 3.2.3. For the parameters used in this work, see appendix.

The data has been reduced into a lower dimension but with different mathemat­

ical algorithms compared with PCA (AENs learn from non­linear relations). However,

the idea of finding the reconstruction error of AEN is the same as for PCA. Therefore,

it can be used to detect an anomaly since two classes have a different range of value of

reconstruction loss.
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3.2.1 Artificial Neural Networks (ANNs)

Artificial neural networks are essentially mapping functions that map an n­

dimensional input on an m­dimensional output. In the specific case of an autoencoder

network, the input dimension is equal to the output dimension. Besides these so­called

input and output layers a neural networks consists of a varying numbers of hidden layers,

with neurons who themselves perform a non­linear transformation on their input. The

value y = ax+ b of any given neuron (where a and b are parameters and x is the input

of the neuron) serves as argument of a so­called activation function which can take on

different forms (often sigmoid and Relu functions are used). Equation (3.6) and (3.7)

show the formula of sigmoid and Relu functions respectively.

S(y) =
1

1 + e−y
(3.6)

R(y) =


0 for y ≤ 0

y otherwise
(3.7)

Depending on the structure of the network, the neurons of one single layer can be con­

nected to any number of neurons in the next layer. For example, in a fully connected

neural network, the output of the j th neuron in the (i+1)th layer is the sum of all outputs

of the ith layer yi+1,j = f(
∑

k ak,i+1xk + b) where k is the index of a neuron in the ith

layer and f() is an activation function. Such a network can easily have a large number

of parameters aj,i and b to be determined. The determination of these parameters is done

during the training phase of the network where a loss function is minimized. In the au­

toencoder network, the loss function is simply defined as the reconstruction error of the

input vs. output comparison. In our specific case this is done by calculating the mean

squared error (mse) of the networks output with respect to the networks input, where
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the squared errors for all dimensions are summed as shown in equation (3.8). The pa­

rameter values of the network are changed using a gradient descent method in order to

minimize errors by keep changing weights. The equation (3.9) shows the example of

gradient descent.

MSE =
1

n

n∑
i

(y
′

i − yi)
2 (3.8)

ai = a0 − r∇yi (3.9)

Where

• n is the number of samples.

• y
′
i and yi are the label and the output of the ith layer.

• ai and a0 are updated weight and old weight parameters.

• r is the learning rate parameter

• ∇yi represents the magnitude of a weight change.

The gradient descent in our calculations will be an Adam optimizer (adam) which is

provided by the Tensorflow library. For a much more in­depth explanation on neural

networks we refer the interested reader to (Mehta et al., 2019)

3.2.2 Fully Connected Neural Networks

The term fully connected comes from the fact that each node in one layer of a

network is connected to all nodes of the next layer. A Fully connected layer is a function

from Rm to Rn shown in Figure 3.3. The advantage of fully connected neural networks

is they are good at pattern recognition without need for special assumptions to be made

for the input data.
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Figure 3.3 A Fully­connected layer is a function mapping from Rm to Rn. Each node
in one layer is connected to all nodes of the next layer

3.2.3 Convolutional Neural Networks

Due to information loss across spatial dimensions of fully connected network,

Convolutional Neural Networks are a special kind of network structure which takes into

account the two dimensional structure. This type of neural network is suitable to deal

with data structure like an image. The CNN takes a two dimensional array as input as

well as output. Instead of mapping every input pixel to an independent neuron the CNN

uses convolutional kernels on the input image. These convolutional kernels have the

dimensionm×m or written (m,m). In each convolutional layer these kernels can take

the form of n so called feature maps (FM) which constitute the trainable parameters

of the model. The general training procedure is similar to that of the fully connected

network in that a gradient descent algorithm is used to change the parameters such that

the loss function (again the mean squared error) is minimized. In addition to the kernel

size and the feature maps, the CNN also can use strides (step size with which the kernels

scan the image) and padding (additional pixels which are added on the images boundary)

to select the sliding patterns in particular parts of the two dimensional data, or images.
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Figure 3.4 The convolutional neural networks (CNNs) take the two dimensional input
image into account as well as output. The CNNs use convolutional kernels on the input
image or feature map. In addition to the kernel size and the feature maps, the CNN also
can use strides and padding

3.3 Receiver Operating Characteristic (ROC) curve

We will introduce some concepts of a machine learning tool known as a

confusion matrix to later on define what is the ROC curve. Let’s start with an example

of a confusion matrix for a binary classifier (which can be used as a reference concept

in this work).

Table 3.1 The table give an example of confusion matrix.

N = 3300 Predicted: NO Predicted: YES
Actual: NO 1000 200
Actual: YES 100 2000

The table shows an example of a confusion matrix for a disease classifier. Each cell in­

forms the number of patients that are classified by a doctor. For example, the doctor pre­

dicts 1000 healthy (no disease) patients as healthy (correctly­classify), 200 healthy pa­

tients as affected (wrongly­classify), 100 affected patients as healthy (wrongly­classify),

and 2000 affected patients as affected (correctly­classify). We can see the performance

of the doctor through the confusion matrix. He diagnoses 3000 cases correctly and 300

cases wrongly. Now we assume that one doctor is a machine learning algorithm with
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particular parameters. The next step, we need to compare which, algorithm and param­

eters, say doctors, is the best to classify outliers (a disease in this case).

Table 3.2 The table give an example of 4 classes of confusion matrix including True
Positive (TP), True Negative (TN), False Positives (FP), False Negatives (FN).

N = 3300 Predicted: NO Predicted: YES
Actual: NO 1000 200
Actual: YES 100 2000

• True Positive (TP): These are cases in which a doctor predicted yes (they have the

disease), and they do have the disease.

• True Negative (TN): A doctor predicted no, and they truly don’t have the disease.

• False Positives (FP): A doctor predicted yes, but they don’t actually have the

disease. (Also known as a “Type I error.”)

• False Negatives (FN): A doctor predicted no, but they actually do have the disease.

(Also known as a “Type II error.”)

To quantify the quality of the different models (doctor’s ability) to find outliers, a Re­

ceiver Operating Characteristic (ROC) curve is used. In other words, it is used to de­

scribe the performance of a classification model. The ROC curve is a method to estimate

and compare the performances of ML algorithms since it tells how much backgrounds

are detected from relevant signals.

In this work, we use the logarithm of the inverse of the fraction of incorrectly

classified events (log 1
ϵb
) plotted against the fraction of correctly classified signal events

(ϵs), as ROC curve. Here, the subscripts b and s stand for background and signal, re­

spectively. For our specific examples with two centrality classes, peripheral (signal)
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and central (background), we define the fraction of events that are correctly classified

as signal out of all events classified as signals by:

ϵs =
TP

TP + FN
. (3.10)

The fraction of events incorrectly classified as signal out of all events classified

as background is given by:

ϵb =
FP

FP + TN
. (3.11)

Hereby we use:

• TP (True Positives): number of correctly classified signal events

• FN (False Negatives): number of wrongly classified background events

• FP (False Positives): number of wrongly classified signal events

• TN (True Negatives): number of correctly classified background events

According to equations (3.10) and (3.11), ϵs and ϵb are proportional to the number

of correctly classified events and the number of wrongly classified events, respectively.

Due to a large number of background compared to outlier events, log scaling is applied

to 1/ϵb. This makes the relation between ϵs and log ( 1
ϵb
) more obvious to notice.

To find the relation between ϵs and log ( 1
ϵb
), a histogram of binary classes will be

cut on one value of the horizontal axis * separating the left­hand side from the right­hand

side starting from the minimum value until the maximum value. The TN and FN will be

measured only from the left­hand side while the TP and FP will be measure only from

the right­hand side per each cut. Then, we can calculate the values of ϵs and log ( 1
ϵb
)

using equations (3.10) and (3.11), respectively. The first cut will always gives the value

*which are one value of radius and reconstruction error in this work
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of ϵs and log ( 1
ϵb
) as 1. When we vary parameters, for better performance, ϵs trends to

slowly decrease, while log ( 1
ϵb
) trends to increase quickly. Therefore, the better curves

will stay on the upper­right of the graph, see in section 4.2.

 



CHAPTER IV

METHODOLOGY AND RESULTS

In this part, we will present methodology and results in the following steps:

1. Introduction of the theoretical background and model setup of UrQMD including

system parameters and how is the data can be generated.

2. Discussion of the results and implication for experiments. Then we show and

compare the performance for the different methods for the specific task.

4.1 Theoretical background and model setup

The main goal of the Beam Energy Scan (BES) program at the BNL Relativistic

Heavy Ion Collider (RHIC) is to study the QCD phase structure. This is expected to

lead to the mapping of the phase diagram for strong interactions in the space of temper­

ature (T ) versus baryon chemical potential (µB). Both theoretically and experimentally,

several advancements have been made towards this goal. The magnitude of conserved

quantity fluctuations are distinctly different in the hadronic and the QGP phases. The

different areas in phase diagram indicate different values of temperature and pressure.

The susceptibility, which is defined as the derivative of free energy density or pressure

of a thermodynamic system at a given temperature with respect to the chemical poten­

tial, can be related to the cumulants of the event­by­event distribution of the associated

conserved quantity (Stephanov, 2009). STAR detector at RHIC measures energy de­

pendence (√sNN = 7.7­62.4 GeV) of net proton cumulant ratios.

The latest STAR experiment, (Abdallah et al., 2021) shows an interesting scaled

cumulant ratios deviates from monotonic trends at √sNN = 7.7 GeV. In figure 4.1 on
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the bottom left, one does observe non­monotonic energy dependence of proton C4/C1

in the 0− 5% central collision. This is because the forth­order cumulants (C4) contains

contributions from second, third, and forth order factorial cumulants (κn), see appendix.

Figure 4.1 Energy dependence of the scaled proton and anti­proton cumulants
and correlation functions in 0 − 5% central Au + Au collision at √

sNN =
7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The error bars and bands represent
the statistical and systematic uncertainties, respectively.

The anomaly could be due to new physics, critical phenomena, a phase transition,

or be a result of detector issues or misidentified events. It was suggested earlier that

such an anomalous distribution could be created by misidentification of a few peripheral

events as central events. In any case, it is important to identify those events which

are responsible for the anomaly and investigate them in more detail. In, (Bzdak et al.,

2018), the authors investigate the proton multiplicity distribution as the superposition
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of two event classes including Poisson and binomial. Poisson and binomial are the

representation of the combination between small number of rare events (outliers) and

a large bulk of background. This situation is a perfect analogy to the world of high

energy physics collision that outlier and background events are entangle. Nowadays,

machine/deep Learning (ML/DL) algorithms are well known for the feature extraction

problem. To determine the significant causes of distribution with as least as human

assumption, we propose to implement unsupervised learning to disentangle any two

classes based on the feature of momentum space. This investigation can be also used

as an alternative cross­check of the previous studies (Bzdak et al., 2018). Moreover,

machine learning has no bias in analyzing data. We can train the machine in various

situations to handle e.g. broken events etc.

In this work, we use UrQMD (Ultrarelativistic Quantum Molecular Dynamics)

model (S. Bass et al., 1999) as our source of data. UrQMD is a transport model for

simulating heavy­ion collisions in the energy range from SIS to RHIC. It is a simulation

package based on an effective Monte Carlo solution of the Boltzmann transport equa­

tions (Bleicher et al., 1999). That means that hadrons are propagated on straight lines

until they scatter according to experimentally known cross­sections. It is widely used

in high energy physics studies as it gives realistic results for the yields and momentum

spectra of produced particles over a wide range of beam energies. It is designed as a

multipurpose tool for studying a wide variety of heavy­ion related effects ranging from

multifragmentation and collective flow to particle production and correlation. We can

generate data from UrQMD by setting the system parameter in the input file and com­

piling through the command line in a UNIX based system. Figure 4.2 shows an example

of an input file. All parameters are explained in detail in table 4.1.
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Figure 4.2 This picture shows the example format of the UrQMD input file.

Table 4.1 The description of sample input file of the figure 4.2.

label arguments description

# (none) comment line

pro Ap Zp mass and proton number of projectile ion

tar At Zt mass and proton number of target ion

nev nevents number of events to calculate

tim tottime outtime time of calculation and output

elb ebeam incident kinetic beam energy (lab frame)

imp bmax impact parameter

eos EoS equation of state

cto index value set option in CTOption array

ctp index value set optional parameter in CTParam array

f15 (none) suppress output to unit 15

xxx (none) last line of input­file
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Since, in general, we do not know how an outlier looks like, i.e., what the char­

acteristics of an outlier are, we have to generate “unusual” events by hand and present

our method with these artificial outliers. In the following, we will deal with heavy­ion

(Au+Au) collision events motivated by recent STAR data (Abdallah et al., 2021).

For the following study, we generated 184000 central (b = 3 fm) events and 600

peripheral (b = 7 fm) events from Au+Au collisions at √sNN = 7.7 GeV. The number

of events was explicitly chosen to differentiate the number of outliers and backgrounds,

resembled the status of the experimental data from STAR experiment. However, our

results can be generalized to any number of events. The reason for this choice of sys­

tems is that such a combination of central (background) and peripheral (signal) events

would lead to an anomalous proton number distribution, as observed by the STAR ex­

periment. Even though, such a choice of events would be easily distinguishable by the

conventional method of counting the total number of charged particles per event, as is

shown in figure 4.3, it’s a good choice for investigating the ML/DL performance.

Figure 4.3 Distributions of the multiplicity of charged particles (excluding protons)N ,
using |y| < 0.5 and PT ⩽

√
2 GeV for the peripheral and central events. The two

event classes show no overlap and are therefore clearly distinguishable by their charged
particle number distribution.
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In order to use any outlier detection algorithms, we first have to create character­

istic features (or feature­vectors) for all individual events. For this purpose, we define

the momentum feature of every event. As a first step, we create “momentum features”

of charged particles within a specific mid rapidity (|y| ⩽ 0.5) window. These “mo­

mentum features” then characterize every single event and form the basis of the training

and validation datasets. From the generated UrQMD data, and within the mid rapidity

range, only charged particles are selected and binned in 2 Dimensional histograms of

transverse X and Y momentum in two different momentum ranges to study the effect of

the number of dimensions of the features:

• 10x10 momentum bins along the Px and Py direction, i.e. a total of 100 bins, for:

−1 GeV ⩽ PX/Y ⩽ 1 GeV

• 20x20 momentum bins along the Px and Py direction, i.e. a total of 400 bins, for:

−2 GeV ⩽ PX/Y ⩽ 2 GeV

The momentum features are shown in the figure 4.4 for both 100­bins and 400­

bins cases. Each event class is presented here, including peripheral events and central

events.
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Figure 4.4 Examples of charged particle multiplicity in the transverse momentum plane
for a peripheral event (left column) and a central event (right column). The momentum
ranges are PT ⩽

√
2GeV, divided into 10×10 bins in the upper row, andPT ⩽

√
2GeV,

divided into 20× 20 bins in the lower row.

4.2 Result and Performance

In this section, we present the result of implementing machine­learning algo­

rithms on generated data. The algorithms that we have described in the previous chapter,

PCA radius comparison, PCA reconstruction error, and AEN reconstruction error, are

applied and compared. We test the learning performance of each algorithm by varying

parameters and applying it to different feature dimensions. Moreover, we study the case

of unusual events in section 4.2.6. Calculations and data visualizations are done using

python libraries; see Appendix for details.
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4.2.1 Radius comparison of PCA

1

Figure 4.5We show representation of the 100­bins (top) and 400­bins (bottom) feature
after PCA transformation from 100/400 to 2 dimensions (or principal components). Pe­
ripheral and central events are mixed, but the former ones are distributed more sparsely
and spread over a larger area.

As a first step, the PCA is used on 100­ and 400­bins features with two PCs.

The resulting distribution of events in 2­dimensional principle coordinates PC1 and

PC2 is shown in figure 4.5 for illustrative purposes. We can see that the distribution

of both event classes is spherically symmetric here, with peripheral events distributed
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more sparsely and over a larger area. There is, however, significant overlap, and it is

clear that peripheral or signal events could only be uniquely identified if their radius, cf.

equation (3.4), is sufficiently large.

In a next step, we compare the performance of 100­ and 400­bins features using

the cumulative explained variance σ2
cev which is given by the cumulated variance of the

n used PCs divided by the cumulated variance of the maximum number nmax of PCs

which in our case is equal to 100 or 400, respectively. It reads

σ2
cev =

σ2
n

σ2
nmax

=

∑n
i=1 σ

2
PCi∑nmax

i=1 σ2
PCi

. (4.1)

Hereby, σ2
PCi

=
∑N

j=1[(xPCi
)j − x̄PCi

]2/N is the variance of PC i over a total

of N = 184600 events. The cumulative explained variance is shown as function of

the fraction of PCA reduced dimensions n/nmax in figure 4.6. We see that for small

values of the fraction of components, σ2
cev stays close to zero and approaches 1 only

for fractions of components close to 1. With few components only a small amount of

information is captured.

Figure 4.6 Cumulative explained variance represents a function of the fraction of com­
ponents, which is equal to the number of PC divided by the number of input bins, for
100­bins and 400­bins feature. The more components we employ, the better variance of
data.

We now study two cases: First, a low number of PCs yielding a low cev, and
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second, a large number of PCs yielding a higher cev. As seen in figure 4.6, a small

number of principal components capture only a small amount of information. We are

interested to see whether the datasets with a few principal components are able to capture

enough information to differentiate our two event classes, signal and background com­

pared to many principle components applied. We study this for both 100­bins feature

and 400­bins feature.

1

Figure 4.7 Histogram of the PCA radius for an input dimension of 100­bins (top) and
400­bins (bottom) features, reduced to 2 PCs. We see that the two event classes, signal
and background, overlap. With a few numbers of PC applied, are not able to distinguish
outliers from background

According to figure 4.7, we see that a low number of component yield, low

variabilities from the dataset. The two event classes significantly overlapped in this case.

For the second case, if we increase the number of PCs, it will improve the separation
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between two classes of the histogram as shown in figure 4.8.

1

Figure 4.8 Histogram of the PCA radius for an input dimension of 100­bins (top) and
400­bins (bottom) features, reduced to 80 and 320 PCs, respectively. We see that the two
event classes, signal and background, overlap less. With a large number of PC applied,
we are able to classify the outliers and background.

To judge whether one can use the radius as defined in equation (3.4) to separate

the two classes, we calculate r(i) for each event and make histograms for two cases with

different numbers of principal components, i.e., cases with significantly different cev.

We compare 100­bins and 400­bins features. For a few principle components applied

in figure 4.7, both distributions, the signal and background, show a large overlap. For

a large number of principal components applied in the figure 4.8, the peaks are well

separated in the case of 80D or 320D and the distributions share a much smaller overlap.

It is obvious that, as more principal components are used, better separation between the
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two classes can be achieved. To understand this behavior, we show in figure 4.9 a

comparison of an arbitrary input event with its reconstruction by PCA using 2 and 80

PCs. the reconstruction with 80 PCs showsmuchmore variability and closely resembles

the input. This increased variability or variance is then captured in the radius, which is

calculated as the sum of squares of all PCs, and therefore closely related to the variance.

In other words, the PCs of the outlier events show a larger variance, and more PCs make

the identification of signal events easier.

Figure 4.9 2 dimensional normalized histogram of the charged particle number for a
single event. We compare the input feature with its reconstructed output after imple­
menting PCA with 2 and 80 principal components. For 2 PC, the reconstruction feature
looks similar to the event­averaged input feature. For 80 PC, the reconstruction feature
is approaching the input feature.
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4.2.2 Reconstruction error of PCA

A different method to quantify the appearance of outlier events is to calculate the

reconstruction error according to equation (3.5). Instead of focusing on the variability of

the dataset (as in the case of the radius comparison), this method focuses on the similarity

of data points.

1

Figure 4.10 Histogram of PCA reconstruction error for an input dimension of 100 (top)
and 400 bins (bottom), reduced to 2 PC. With a low number of PC applied, the recon­
struction error is quite large compared to a higher number of PC. The histogram shows
that the distributions share a small overlap.
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1

Figure 4.11 Histogram of PCA reconstruction error for an input dimension of 100 (top)
and 400 bins (bottom), reduced to 80 and 320 PCs respectively. With a high number
of PC, the reconstruction error is quite small compared to a lower number of PC. The
histogram shows that the distributions share a large overlap.

We calculate the reconstruction error for both cases, m = 2 for a few numbers

of PCs and m = 80 and 320 for a large number of PCs. Figure 4.10 and 4.11 show

the distributions of the reconstruction error for these cases. We first note that the re­

construction error is overall much smaller for 80(or 320) PCs than for 2 as one would

expect. We also see that the distributions for 2 PCs are better separated than for 80 (or

320). In the former case, background events are, on average, better constructed than

outlier events. Increasing the number of PCs, the RE approaches the same lower range

of values for both background and outlier events, because the algorithm learns from

both significant and insignificant components In this case, signal and backgrounds are

not separable using the RE.
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4.2.3 PCA’s radius comparison VS PCA’s reconstruction error

The reconstruction error method is based on the similarity of events with a re­

duced representation, and thus less PC work better to separate signal and background

events. In contrast to that, the radius comparison method differentiates the two classes

by the variance of components, thus choosing a high number of principal components

leads to better discrimination. Therefore, the number of components needs to be chosen

carefully and in accordance with the method to be used.

To make the comparison of the different methods more quantitative, we begin

with ROC curves of 100­bins features for the reconstruction error methods with various

numbers of PCs, 1, 3, 5, and 80, in figure 4.12. Amongst these, 5 PCs give the best

performance, clearly better than the large number of 80 PCs but also significantly above

the lower values of 3 and 1. Presumably, for 5 PCs, enough significant information is

preserved, while events are not reconstructed with too high accuracy, and consequently,

the outlier detection here works best. One should keep in mind that this specific choice

of the number of PC may be different for a different dataset and may have to be adjusted

according to the specific experimental setup used.

Now it’s time to compare the radius comparison and reconstruction error method

of PCA. ROC curves of 100­ and 400­bins features are plotted in the figure 4.13. The

curves of radius comparison method and reconstruction error methods are labeled as RC

and RE, respectively. For the RC method, the number of PCs is equal to the number of

input bins. While for the RE method, the number of PCs is equal to 5. We see that RE

with a low dimension yields better performance for both input features. The PCA re­

construction error method works better because it tries to optimize principal component

(PC) by choosing as least as PCs that are able to capture the significance of data while

the radius comparison method needs viabilities as much as possible to differentiate two

classes.
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Figure 4.12 ROC charts for event separation with PCA using the reconstruction error
(RE), compared for different numbers of PC. We obtain the best result for 5 PC, clearly
outperforming the high value of 80 PC.

Figure 4.13ROC charts for comparison of two PCAmethods, reconstruction error (RE)
with 5 PC and radius comparison (RC) with the number of PCs equal to the number
of input bins. The dashed line represents 400­bins input. We see that RE with a low
dimension yields better performance for both input features. The PCA reconstruction
error method works better because it tries to optimize principal component (PC) by
choosing as least as PC that is able to capture the significance of data while the radius
comparison method needs viabilities as much as possible to differentiate 2 classes.

4.2.4 Reconstruction error of AEN

In this section we explore the possibilities of using an AEN for outlier detection

in the same scenario as presented earlier.

Different kinds of neural network structures can be employed as an AEN. In
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the following, two different kinds of network structures are employed. These include

fully­connected neural networks, convolutional neural networks. The details of these

network structures are explained in appendix.

The same input features as used before, 100 and 400 bins, are encoded by the

AEN to a low dimensional representation at the bottleneck and subsequently decoded

back to some output which has the same dimension as the input feature. The recon­

struction error is then calculated according to equation (3.5) for each event. Figure 4.14

shows the histograms of the reconstruction error for a 100­bins feature and a 400­bins

feature, respectively. The network structures are fully­connected (FC) and convolu­

tional (CN) neural networks. Fully­connected neural networks are encoded to 5D in the

bottleneck layer (FC­5D) and convolutional neural network are encoded with (2,2,32)

in the bottleneck layer (CN­32FM). From the figure, for both 100­ and 400­bins feature,

we use 5 hidden layers for both FC and 7 hidden layers for CN neural networks to be

the representative of a big network structure. We see that the distributions of the errors

for peripheral and central events are in the same range and have nearly the same shape

for both types of structures. Consequently, the separation of the event classes is almost

the same for the both types.

In addition to understand the process of encoding in AEN, we compare the input

feature with its reconstruction applying fully­connected neural networks, encoded into

5D, for one randomly chosen event in figure 4.15. We show the averaged input feature,

determined over the whole set of input spectra. It clearly resembles the reconstructed

feature. The decoder network learns to reproduce the average of all input features as

output. Thus, the information encoded in the bottleneck is not that relevant for this

autoencoder. This indicates that, for a better reconstruction of the original input, more

neurons in the bottleneck would be required. In the case of employing large network

structure (FC with 5 hidden layers), we have also tried to vary the number of encoded
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1

Figure 4.14 Comparing two kinds of AEN structures applied to the 100­bins feature
(top) and 400­bins feature (bottom). The network structures with 5 and 7 hidden layers
are fully­connected (FC) and convolutional (CN) neural networks, respectively. The
encoded representations in the bottleneck are 5D and (2,2,32), for FC and CN respec­
tively. The results show a reasonable separation between event classes with roughly the
same ranges of reconstruction error.

dimension and found that it does not contribute significantly to the performance of AEN.

This simple comparison already yields a reasonable separation accuracy. On the other

hand, if we use small network structure (FC with 1 hidden layer), the reconstruction

now is different from the average input feature as shown in figure 4.16 and the result of

separation accuracy is better.
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Figure 4.15 Normalized momentum features. The first row shows the input and output
of AEN for a 10x10 momentum feature. The bottom figure shows the average of input
data over 184600 events. Note that the output feature of AEN­FC with 5 hidden layers
applied and encoded into 5D is similar to the averaged input feature.

4.2.5 Comparison of PCA and AEN

In this subsection, we will present the differences between PCA and AEN. As

explained earlier, both algorithms have different learning processes. PCA is a linear

approach while AEN is a non­linear approach. We also investigate the features of prin­

ciple components (bottleneck) for PCA (AEN) which show interesting information. We

compare the performances of these two algorithms graphically via a ROC curve and

numerically via a table. We will discuss in details of how the learning algorithm works.

First, we transform (encode) the 100 features into 3 dimensions for PCA (autoen­

coder). The encoded features of both are plotted in the figure 4.17 with a 2­dimensional

representation. PCA is explained by the first three top graphs. The events are distributed

in each PC axis similar to what we got on the section 4.2.1, while the feature in AEN,

explained by the last three bottom graphs, is clearly different. The data are encoded to

0 at one node (N1) in the bottleneck. For the values of N2 and N3, it behaves similar to
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Figure 4.16 Normalized momentum features. The first row shows the input and output
of AEN for a 10x10 momentum feature. The bottom figure shows the average of input
data over 184600 events. Note that the output feature of AEN­FC with 1 hidden layer
applied and encoded into 5D is now different from the averaged input feature.

the case of PCA but with a narrower spreading.

The ROC chart of 100­bins (10x10) feature, for two network structures and a

PCA, is shown in figure 4.18. We see that the PCA curve mostly lies above the other

two, indicating a better performance. For deeper insight, we show the performance

numerically in table 4.2 by assuming if we cut the histogram to get 90% of signal how

much, in percentage, backgrounds will smear in. For network structures, details are put

in the appendix. Overall, we note that out of the tested structures, the best performance

is given by PCA­5D, for both 100­ and 400­bins input features. The performance will

be discussed more in the end of this section.

We compare the output of AEN­FC, shown in Figures 4.15 and 4.16, with PCA

in the previous section. We find that the output of 2D­encoded AEN is similar to the

averaged input features. On the other hands, the output of 2D­encoded PCA deviates

significantly from the averaged input features. the reconstruction with two PCs essen­
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Figure 4.17We transform (encoded) the dimensions of input from 100 bins into 3 and
plot pairs of encoded dimensions, (PCi, PCj) where i ̸= j = 1, 2, 3, for PCA (top)
and (Ni, Nj) where i ̸= j = 1, 2, 3, for AEN (bottom), on 2­dimensional coordinates.
For PCA, the events are distributed all over the 2­dimensional configuration (principle)
space for all 3 pairs of components. On the other hand, the first two subplot of AEN,
the value of N1 vanishes (N1 = 0).

tially only recovers the average distribution. Interestingly, when features are encoded

into low dimensional representation, AEN encodes data by considering the relation be­

tween the 100 inputs (each pixel). This implies that neural networks are connected and

investigate features more globally. The more important features are enough to encode
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Figure 4.18 Performance of PCA with 2D compared to two kinds of AEN structures.
The ROC chart shows that the performance of PCA is generally better than of an AEN.

Table 4.2 This table summarizes the fraction of background (FP) events (in percent)
that are falsely identified as outliers if we cut on the reconstruction error to select 90%
of true outliers (TP). Different numbers of encoded dimensions 2PC, 3PC, and 5PC for
PCA and 2,3, and 8 for the fully connected AEN for both 10x10 and 20x20 momentum
bins are compared to a varying number of feature maps for the CNN­AEN. All results
using the input of 20x20 momentum bins separate the two classes better than the input
of 10x10 momentum bins. An optimal number of parameters is found for all models.

method 10x10 20x20

PC
A 2 PC 3.5% 2 PC 1.9%

3 PC 2.2% 3 PC 1.1%
5 PC 1.6% 5 PC 0.8%

A
EN

FC­2D 3.3% FC­2D 1.8%
FC­3D 2.5% FC­3D 1.2%
FC­8D 2.0% FC­8D 0.9%

A
EN

CN­1FM 4.7% CN­1FM 3.4%
CN­2FM 3.6% CN­2FM 8.1%
CN­4FM 4.2% CN­4FM 1.4%

into the small number of hidden layers. This is the reason why when we increase the

number of encoded dimensions in an AEN, in the case of large network structures, the

performance is slightly changed. In contrast, encoded components of a PCA are selected

from sub­spaces that contribute the most variance of the data. This make the weight in

principle components more specific and local. However, the performance of AEN could

be improved by fine­tuning hyper­parameter, the number of layers and the number of
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nodes, corresponding to the size of input feature.

4.2.6 Testing with other types of outlier

After using our neural networks for separating central and peripheral event

classes, we are now ready to test them on a different type of outlier which are again con­

structed artificially as follows: We generate 600 central events and their corresponding

momentum features as detailed in section 4.1. We then truncate one quarter of these

features, i.e. we set the values in one randomly chosen quadrant of the PX­PY plane

equal to zero as shown in figure 4.19. We vanish the number of charged particle in the

high momentum range PX­PY and also in the random manner as shown in figure 4.21

and 4.20 respectively. These events are then normalized and used as input for our ML

algorithms. We do this to both 100­ and 400­bins feature.

Figure 4.19 shows the example of how the outliers have been created. We randomly
truncated 600 central events with 4 styles. The picture shown here is for the case of
100­bins event.
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Figure 4.20 shows the example of information losing. We randomly null all events. The
picture shown here is for the case of 100­bins event.

Figure 4.21 shows the example of information losing. We cut high range value of mo­
mentum out for all events. The picture shown here is for the case of 100­bins event.

We begin by checking the 2­dimensional representation in PCs after applying the

PCA, see figure 4.22. While the central events naturally occupy the same space as shown

earlier in figure 4.5, the truncated events or outliers are clearly separated from these into

four distinct areas which are symmetrically positioned around the central events. Each

of four these areas contains outlier events where one specific quadrant has been set to
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Figure 4.22 The 2­dimensional representation of the 100­(top) and 400­bins feature
(bottom) is plotted after applying the PCA transformation from the 100 dimensions to
2 dimensions. This plot shows that the outliers are separated from backgrounds as 4
groups with the same radius’ range.

zero.

PCA learn to select the best subspace, resulting in the maximum variance of

the original data set, compared to others. The chosen subspace will be new principle

coordinate that can group original data into 5 groups including 4 of outliers and 1 of

background. Since backgrounds trivially contribute to variances, in contrast to outliers,
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we see backgrounds in the middle and outliers more closely to the margin as shown in

figures 4.22.

Now, imagine that if we do 50 styles of truncated events this way instead of 4.

We will get 50 groups of outliers uniformly distribute around the backgrounds with the

same range of radius values. These kinds of outliers are artificially generated following

a certain pattern. And this pattern is then easily detected by the network. On the other

hand, the previously considered task of identifying peripheral events is more challenging

as these are not uniformly distributed. One could say that these types of outliers come

from non­uniformly events or imply different physics.

We have quantified the smearing backgrounds from signal of our neural network

structures (PCA­5D (100 bins), AEN­FC­5D (100 bins), AEN­CN­2FM (10x10), AEN­

CN­4FM (20x20)) using the reconstruction criterion. As expected, in the case of 4­style

truncated events, outlier and background events are separated perfectly. All outliers are

detected without any background smearing in. If we cut the reconstruction error to get

90% of outliers, we will get 0% of backgrounds smeared in for all structures and both

100­ and 400­bins features, see table 4.3. This demonstrates that the algorithms fully

capable of detecting uniformly created outliers. We then test the separation of peripheral

and central events, creating two additional obstacles that might be encountered in the

context of experimental particle physics:

• Failed tracking of high­momentum particles: we truncate 20% of the PX and PY

range, leaving only the inner 8×8 or 16×16 bins of the 100­ or 400­bins features

unaltered,

• Detector malfunction or nonuniform noise: with a probability of 10%, we set each

single momentum bin to zero.

All obtained spectra are again normalized to 1. We do this with both 100­bins

features and 400­bins features. So the effect of granularity is taken into account.
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Table 4.3 Comparison of the test results for the three different models. Here the fraction
of falsely as outlier identified background is shown for the three outlier options that are
used in the testing. Both PCA and the AEN­FC perform equally well.

Input

dim.

PCA AEN­FC AEN­CN

100 400 100 400 10x10 20x20

cut

half

5PC 5PC 5D 5D 2FM 4FM

0% 0% 0% 0% 0% 0%

rand

cut

5PC 5PC 5D 5D 2FM 4FM

2.5% 1.4% 2.5% 1.4% 3.3% 2.8%

high

cut

5PC 5PC 5D 5D 2FM 4FM

4.3% 1.0% 5.0% 1.1% 12.2% 1.5%

 



CHAPTER V

SUMMARY AND CONCLUSIONS

We have presented and exploredmethods of outlier detection using unsupervised

learning which can prove useful for data analysis in high energy nuclear collision ex­

periments. For this purpose, we have compared several unsupervised machine learning

models such as the Principal Component Analysis (PCA) and Autoencoder networks

(AEN). In a specific example we use the unsupervised learning to separate misidenti­

fied peripheral events from a background of central events. This example was motivated

by the yet unexplained finding of large factorial cumulants at the STAR experiment. In

this specific example, the transverse momentum spectra served as input features for the

ML algorithms.

It was found that the reconstruction error in PCA or AEN can be a useful tool to

identify outlier events. Furthermore, using the reconstruction error, it was found that a

model which is too complex, i.e. gives a very small reconstruction error, gives a larger

overlap of background and outlier events. Thus, a model which is less complex (has

fewer parameters), but complex enough to capture the most essential features of the

event is preferred. This is consistent with the result that a higher dimensional input fea­

ture also provides a better separation capability, as it is harder to reconstruct exactly but

general features can be captured also by less complex models. This therefore provides

an advantage for the direct application of outlier detection in an online analysis tool for

heavy ion experiments. Since the model can be less complex it will be able to handle

more events in a shorter time with fewer computational resources.

In a practical application the methods presented here will have to be adjusted to

the actual output of the experiment. However, we believe that our work can provide a
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solid guideline for the application of unsupervised outlier detection in nuclear collision

experiments.
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APPENDIX A

ARTIFICIAL NEURAL NETWORK BACKBONE

Table 1 Structure of the largest (with respect to the number of parameters) fully con­
nected network used. Shown is the type of layer, the number of neurons in that layer
(nodes), the activation function used for that layer and the output dimensionality of that
layer. The total number of parameters of this model is 35,976.

FC (100 bins), Opt=’adam’, Loss=’mse’
layer types nodes act fn output
1 Input 100 100
2 Dense 88 relu 88
3 Dense 64 relu 64
4* Dense 52 relu 52
5 Dense 64 relu 64
6 Dense 88 relu 88
7 Dense 100 sigmoid 100

Table 2 Structure of the smaller (with respect to the number of parameters) fully con­
nected networks used with the 10 × 10 dimensional input features. Shown is the type
of layer, the number of neurons in that layer (nodes, which is either 2, 3 or 5), the acti­
vation function used for that layer and the output dimensionality of that layer. The total
number of parameters of this model are 502/703/1,105 for 2/3/5 encoded dimensions in
the bottleneck respectively.

FC (100 bins), Opt=’adam’, Loss=’mse’
layer types nodes act fn output
1 Input 100 100
2* Dense 2/3/5 sigmoid 2/3/5
3 Dense 100 linear 100
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Table 3 Structure of the smaller (with respect to the number of parameters) fully con­
nected networks used with the 20× 20 dimensional input features. Shown is the type of
layer, the number of neurons in that layer (nodes, which is either 2, 3 or 5), the activation
function used for that layer and the output dimensionality of that layer. The total number
of parameters of this model are 2,002/2,803/4,405 for 2/3/5 encoded dimensions in the
bottleneck respectively.

FC (400 bins), Opt=’adam’, Loss=’mse’
layer types nodes act fn output
1 Input 400 400
2* Dense 2/3/5 sigmoid 2/3/5
3 Dense 400 linear 400

Table 4 Structure of the convolutional AEN used with the 10 × 10 dimensional input
features. Shown is the number of feature maps (FM) and the kernel size in that layer,
the strides, the activation function used and the output dimensionality of that layer. The
total number of parameters of this model are 216/771/2,901/175,521 for 1/2/4/32 FMs
in the bottleneck respectively.

CN (10x10), Opt=’adam’, Loss=’mse’, 700 epochs

layer FM, kernel strides padding act fn output

1 (10,10,1)

2 4/8/16/128, (2,2) (2,2) same relu (5,5,4)

3 2/4/8/64, (3,3) (2,2) same relu (3,3,2)

4* 1/2/4/32, (3,3) (2,2) same sigmoid (2,2,1)

5 2/4/8/64, (2,2)T relu (3,3,2)

6 4/8/16/128, (3,3)T relu (5,5,4)

7 1, (2,2)T (2,2) same relu (10,10,1)
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Table 5 Structure of the convolutional AEN used with the 20 × 20 dimensional input
features. Shown is the number of feature maps (FM) and the kernel size in that layer, the
strides, the activation function used and the output dimensionality of that layer. The total
number of parameters of this model are 212/747/2,789 for 1/2/4 FMs in the bottleneck
respectively.

CN (20x20), Opt=’adam’, Loss=’mse’, 700 epochs

layer FM, kernel strides padding act fn output

1 (20,20,1)

2 4/8/16, (2,2) (2,2) same relu (10,10,4)

3 2/4/8, (2,2) (2,2) same relu (5,5,2)

4 2/4/8, (3,3) (2,2) same relu (3,3,2)

5* 1/2/4, (3,3) (2,2) same sigmoid (2,2,1)

6 2/4/8, (2,2)T relu (3,3,2)

7 2/4/8, (3,3)T relu (5,5,2)

8 4/8/16, (2,2)T (2,2) same relu (10,10,4)

9 1,(2,2)T (2,2) same relu (20,20,1)
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The cumulants of a given data sample could be written in terms of moments as

follows:

C1 =< N >

C2 =< (δN)2 >

C3 =< (δN)3 >

C4 =< (δN)4 > −3 < (δN)2 >2

Where N is the number of sample.

The factorial cumulant, κn, are related to the corresponding cumulant (Cn) through the

following relations:

κ1 = C1

κ2 = −C1 + C2

κ3 = 2C1 − 3C2 + C3

κ4 = −6C1 + 11C2 − 6C3 + C4

C2 = κ2 + κ1

C3 = κ3 + 3κ2 + κ1

C4 = κ4 + 6κ3 + 7κ2 + κ1
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