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Chapter I

Introduction

All the known interactions that occur in nature can be reduced to four
interactions between the matter particles. There are the strong (nuclear) inter-
action, electromagnetism, the weak interaction and gravity. Among these four
interactions only the weak interaction does not produce observed bound states
but it causes reactions which make the particles ultimately decay into the stable
leptons and hadrons, that is, electrons, neutrinos and protons.

The history of the weak interactions could be said to have begun in 1896
when Henri Becquerel discovered radioactivity. We today know that the majority
of the rays that were discovered stem from the (-decay of heavy nuclei. The
distinction between o and [ rays was first made by Rutherford in 1899. It was
Niels Bohr who first attributed the origin of § rays to the nucleus soon after
Rutherford discovered the atomic nucleus. James Chadwick showed in 1914 that
the 8 rays possess a continuous energy spectrum. To understand this problem,
Wolfgang Pauli postulated in 1930 the existence of a new particle, today called
the electron-antineutrino.

The next milestone in the history of the weak interaction is the monumental
work by Enrico Fermi, in which he developed the first theory of 3-decay. At that
time, and for a long time afterwards, the proton and neutron were regarded as
elementary particles. Then Fermi proposed that the elementary (3-decay of the

neutron

n—pt+e +70 (1.1)



stems from the interaction
£= TE (5,0m,) (40w, (12
where Gr is Fermi constant. Here v, 1, ¥, and 1, denote the wave functions of
the four particles and the quantities O, are appropriate operators which charac-
terize the decay process. This theory has been called the four-fermion interaction.
The four-fermion interaction was modified to the so-called V-A theory soon
after discovery of the parity violation of the weak interaction in 1956 (Lee and
Yang, 1956; Wu, Ambler, Hayward, Hoppes and Hudson, 1957) and the experi-
mental results that there exist only the left-handed neutrino and the right-handed

antineutrino (Goldhaber, Grodzins and Sunyar, 1958). In the V-A theory the weak

interaction is governed by the interaction

L— %J;Ju (1.3)

with

Tu = Dyl = "), + uyu(1 = 2" (1.4)
The Lagrangian cannot be applied to the baryon decay directly since the baryons
are bound states of quarks (for example, the proton is a bound state of two u and
one d quarks while the neutron is a bound state of one u and two d quarks). To

apply the V-A theory to baryon decay processes, one may modify the current in

Eq. (1.4) as follows

V(1 =20 = Uyvulgy — 947°)hn (1.5)

where g4/gy # 1 indicates that the form factors for the vector and the axial
vector current are different. Correspondingly, the 5-decay process in Eq. (1.1) is

respectively described by the interaction

Gr _
7;%%(1 =" )u, - V" (gv — 94" ) (1.6)



By comparing the theoretical prediction of the V-A interactions with the experi-

mental data for the g-decay processes, the parameters are determined as
gy ~1, ga=125 (1.7)

It is clear that one has to introduce form factors in describing the (-decay
since baryons are bound states of quarks. This is very much similar to the electron-
nucleon elastic and inelastic collisions. The form factors have to be momentum-
dependent instead of being constant. The constant g4 in Eq. (1.5) is just the
value of the axial form factor of the nucleon at zero momentum transfer, Q? = 0.

Since the nucleons are bound states of quarks, as already mentioned before,
one has to understand the structure and interaction of them, which is one of the
major research areas in nuclear and particle physics. One of the main research
directions is the search for the manifestation of elementary quarks and gluons in
strong interaction processes. There is no doubt that Quantum Chromodynamics
(QCD) is the fundamental theory of strong interactions, which at least in the
perturbative domain, that is for large momentum transfers (%, is confirmed in a
rather impressive manner. However, in the so-called confinement regime at low
momentum transfers Q2 the properties of QCD are only understood partially in
a somewhat qualitative manner. Now perturbative physics dominates and hence
traditional approaches in solving QCD cannot be applied. Based on the lack of
exact solutions of QCD in the non-perturbative region the main ansatz consists of
the development of effective models. The main recipe in constructing these models
consists of reducing the elementary degrees of freedom of QCD and introducing
effective interactions, characteristic of the fundamental theory.

Our understanding of the structure of hadrons is based to a large extent
on the theoretical concept of the constituent quark model. Thereby, quarks and

antiquarks form the relevant degrees of freedom, where for example baryons are



made up of three of these constituent quarks put together by confinement while
mesons are consist of a quark and an antiquark. In a next step it was realized
that chiral symmetry, considered to be one of the best symmetries of the strong
interaction, is violated by the quark confinement mechanism.

The problem of chiral symmetry breaking is resolved by introduction of
Goldstone boson fields in consistency with chiral symmetry. The Goldstone
bosons, like the pion, reflect the presence of the sea quarks, which in addition
to the valence quarks, should be present. Modern theories which attempt to de-
scribe the structure of baryon should contain both features of low-energy QCD,
such as confinement and chiral symmetry.

The nucleon axial form factor is of fundamental significance to weak in-
teraction properties, the pion-nucleon interaction and has been, and still is, an
important set of parameters for the investigation of the spin-isospin distribution
of the nucleon (since in a non-relativistic language this is nothing but the matrix-
element of the Gamov-Teller operators 7). Hence it provides an important test
for theories that attempt to describe the structure of the nucleon.

The theoretical description of axial form factors was performed in detail
within approaches of low-energy hadron physics: bag model, constituent quark
model, QCD sum rules, chiral perturbation theory, relativistic and non-relativistic
quark models, etc. Since the early eighties chiral quark models (Théberge, Thomas
and Miller, 1980; Thomas, Théberge and Miller, 1981; Théberge and Thomas
1983; Thomas, 1984; Oset, Tegen and Weise, 1984; Tegen, 1990; Chin, 1982;
Diakonov, Petrov and others, 1984, 1986, 1988, 1989; Gutsche, 1987; Gutsche and
Robson, 1989) describing the nucleon as a bound system of valence quarks with
a surrounding pion cloud, play an important role in the description of low-energy

nucleon physics. These models include the two main features of low-energy hadron



structure, confinement and chiral symmetry.

With respect to the treatment of the pion cloud, theses approaches fall
essentially into two categories. The first type of chiral quark models assumes that
the valence quark content dominates the nucleon, thereby treating pion contribu-
tions perturbatively (Théberge, Thomas and Miller, 1980; Thomas, Théberge and
Miller, 1981; Théberge and Thomas 1983; Thomas, 1984; Oset, Tegen and Weise,
1984; Tegen, 1990; Chin, 1982; Gutsche, 1987; Gutsche and Robson, 1989). Origi-
nally, this idea was formulated in the context of the cloudy bag model (Théberge,
Thomas and Miller, 1980, Thomas, Théberge and Miller, 1981; Théberge and
Thomas 1983; Thomas, 1984). By imposing chiral symmetry the MIT bag model
(Chodos et al., 1974) was extended to include the interaction of the confined
quarks with the pion fields on the bag surface. With the pion cloud treated as
a perturbation on the basic features of the MIT bag, pionic effects generally im-
prove the description of nucleon observables. Later, similar perturbative chiral
models (Oset et al., 1984; Tegen, 1990; Chin, 1982; Gutsche, 1987; Gutsche and
Robson, 1989) were developed where the rather unphysical sharp bag boundary
is replaced by a finite surface thickness of the quark core. By introducing a static
quark potential of general form, these quark models contain a set of free parame-
ters characterizing the confinement (coupling strength) and/or the quark masses.
The perturbative technique allows a fully quantized treatment of the pion field
up to a given order in accuracy. Although formulated on the quark level, where
confinement is put in phenomenologically, perturbative chiral quark models are
formally close to chiral perturbation theory which is applied on the hadron level.

Alternatively, when the pion cloud is assumed to dominate the nucleon
structure this effect has to be treated non-perturbatively. The non-perturbative

approaches are based for example on these by Diakonov, Petrov, and others (1984,



1986, 1988, 1989), where the chiral quark soliton model was derived. This model
is based on the concept that the QCD instanton vacuum is responsible for the
spontaneous breaking of chiral symmetry, which in turn leads to an effective chiral
Lagrangian at low energy as derived from QCD. The classical pion field (the
soliton) is described by a trial profile function, which is fixed by minimizing the
energy of the nucleon. Further quantization of slow rotations of this soliton field
leads to a nucleon state, which is built up from rotational excitations of the
classical nucleon. On the phenomenological level the chiral quark soliton model
tends to have advantages in the description of the nucleon spin structure, that
is for large momentum transfers, but has some problems when compared to the
original perturbative chiral quark models in the description of low-energy nucleon
properties.

As a further development of chiral quark models with a perturbative treat-
ment of the pion cloud (Théberge, Thomas and Miller, 1980; Thomas, Théberge
and Miller, 1981; Théberge and Thomas 1983; Thomas, 1984; Oset, Tegen and
Weise, 1984; Tegen, 1990; Chin, 1982; Gutsche, 1987; Gutsche and Robson,
1989), we recently extended the relativistic quark model suggested in Gutsche
(1987) and Gutsche and Robson (1989) to describe the low-energy properties
of the nucleon (Lyubovitskij, Gutsche and Faessler, 2001; Lyubovitskij, Gutsche,
Faessler and Drukarev, 2001; Lyubovitskij, Gutsche, Faessler and Vinh-Mau, 2001,
2002). Lyubovitskij, Gutsche and Faessler (2001), Lyubovitskij, Gutsche, Faessler
and Drukarev(2001), Lyubovitskij, Gutsche, Faessler and Vinh-Mau (2001, 2002),
Cheedket, Lyubovitskij, Gutsche, Faessler, Pumsa-ard and Yan (2003), Pumsa-
ard, Lyubovitskij, Gutsche, Faessler and Cheedket (2003), Inoue, Lyubovitskij,
Gutsche and Faessler (2004) developed the so-called perturbative chiral quark

model (PCQM) in application to baryon properties such as: sigma-term physics,



electromagnetic form factors of the baryon octet, w/N scattering and electro-
magnetic corrections, strange nucleon form factors, electromagnetic nucleon-delta
transition, etc. The current approach contains several new features: i) general-
ization of the phenomenological confining potential; ii) SU(3) extension of chiral
symmetry to include the kaon and eta-meson cloud contributions; iii) consistent
formulation of perturbation theory both on the quark and baryon level by use of
renormalization techniques and by allowing to account for excited quark states
in the meson loop diagrams; iv) fulfillment of the constraints imposed by chiral
symmetry (low-energy theorems), including the current quark mass expansion of
the matrix elements (for details see Lyubovitskij, Gutsche, Faessler and Drukarev
(2001)); v) possible consistency with chiral perturbation theory. In this disser-
tation we follow up on the earlier investigations and employ the same model in
order to study the axial form factor of the nucleon.

The PCQM is based on an effective chiral Lagrangian describing quarks as
relativistic fermions moving in a self-consistent field (static potential) Vig(r) =
S(r) +~+°V(r) which is described by a sum of a scalar potential S(r) providing
confinement and the time component of a vector potential 4°V (7). It is known
from lattice simulations that the scalar potential should be a linearly rising one
and the vector potential is thought to be responsible for short-range fluctuations
of the gluon field configurations (Takahashi, Matsufuru, Nemoto and Suganuma,
2001). In our study we approximate Vig(r) by a relativistic harmonic oscillator
potential with a quadratic radial dependence (Lyubovitskij, Gutsche and Faessler,

2001)
S(r)y=M+er?, V()= My+cor®. (1.8)

The model potential defines unperturbed wave functions for the quarks, which

are subsequently used to calculate baryon properties. This potential has no direct



connection to the underlying physical picture and is thought to serve as an approx-
imation of a realistic potential. The vector part of the potential is also a pure long-
ranged potential and is not responsible for the short-range fluctuations of gluon
fields. In general, we need a vector potential to distinguish between quark and
antiquark solutions of the Dirac equation with an effective potential. Note, that
this type of the potential was extensively used in chiral potential models ( Gutsche
and Robson, 1989; Tegen, Brockmann and Weise, 1982; Tegen and Weise, 1983;
Oset, Tegen and Weise, 1984; Tegen, 1986,1989; Abbas, 1990) . A positive feature
of this potential is that most of the calculations can be done analytically. As
was shown in Gutsche and Robson (1989), Tegen, Brockmann and Weise (1982),
Tegen and Weise (1983), Oset, Tegen and Weise (1984), Tegen (1986,1989), Ab-
bas (1990) and later on also checked in the PCQM (Lyubovitskij, Gutsche and
Faessler, 2001; Lyubovitskij, Gutsche, Faessler and Drukarev, 2001; Lyubovitskij,
Gutsche, Faessler and Vinh-Mau, 2001, 2002; Cheedket, Lyubovitskij, Gutsche,
Faessler, Pumsa-ard and Yan, 2003; Pumsa-ard, Lyubovitskij, Gutsche, Faessler
and Cheedket, 2003; Inoue, Lyubovitskij, Gutsche and Faessler, 2004), this effec-
tive potential gives a reasonable description of low-energy baryon properties and
can be treated as a phenomenological approximation of the long-ranged potential
dictated by QCD.

Baryons in the PCQM are described as bound states of valence quarks
supplemented by a cloud of Goldstone bosons (7, K, 7) as required by chiral sym-
metry. The chiral symmetry constraints will in general introduce a nonlinear
meson-quark interaction, but when considering meson as small fluctuations we
restrict the interaction Lagrangian up to the quadratic term in the meson fields.
With the derived interaction Lagrangian we do our perturbation theory in the

expansion parameter 1/F (where F is the pion leptonic decay constant in the



chiral limit). We also treat the mass term of the current quarks (m,m;) as a
perturbation. Dressing the baryonic three-quark core by a cloud of Goldstone
mesons corresponds effectively to the inclusion of sea-quark contributions. All
calculations are performed at one loop or at order of accuracy O(1/F?, 1, my).
To be consistent, we use the unified Dirac equation with a fixed static po-
tential both for the ground and for the excited quark states. In the Appendix we
give details of the solutions to the Dirac equation for any excited state. Inclusion
of excited states should be handled consistently. First of all, one should guar-
antee conservation of local symmetries (like gauge invariance). Second, excited
states should be restricted to energies smaller than the typical application scale
A =~ 1 GeV of low-energy approaches. An alternative possibility to suppress the
inclusion of higher-order excited states is to introduce a meson-quark vertex form
factor (Oset, Tegen and Weise, 1984; Gutsche and Robson, 1989). Solving the
Dirac equation with a relativistic harmonic oscillator potential Eq. (1.8) one can
show, that the energy shift between the first low-lying 1p excited states and the
1s ground state is about 200 MeV. The excited states (1d and 2s) lie about ~ 370
MeV above the ground state. The 2p and the 1f states are 530 MeV heavier when
compared to the ground state. As soon as the typical energy of the ground-state
quark is about 540 MeV*one can restrict to the low-lying 1p, 1d and 2s excited
states with energies smaller than the typical scale A = 1 GeV. The requirement of
convergence of physical observables when including excited states is physically not
meaningful since it takes states with very large energies where the phenomenolog-
ical low-energy approaches break down. Gutsche and Robson (1989) showed that

the inclusion of excited states to the nucleon and A masses can be convergent

*This value can be deduced from a calculation of octet and decouplet baryon spectrum.

Similar estimates can be found in other chiral quark calculations.
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when using a linearly rising confinement potential, e.g., the use of potential with
a quadratic radial dependence leads to a nonsatisfactory convergence. However,
this statement is sensitive to the quantity one is testing. On the other hand, our
approach has some different features in comparison to previous ones ( Gutsche and
Robson, 1989; Tegen, Brockmann and Weise, 1982; Tegen and Weise, 1983; Oset,
Tegen and Weise, 1984; Tegen, 1986,1989; Abbas, 1990). In particular we perform
a consistent renormalization procedure when we include meson cloud effects. It
gives additional contributions to physical quantities which were not taken into
account before. Pumsa-ard, Lyubovitskij, Gutsche, Faessler and Cheedket (2003)
demonstrated that excited quark states (1p, 1d and 2s) can increase the contribu-
tion of loop diagrams but in comparison to the leading order (three-quark core)
diagram this effect was of the order of 10%. This is why we were interested to
study these effects for the example for the axial form factor. Again, we truncate
the set of excited states to the 1p, 1d and 2s states with energies which satisfy
the condition £ < A =1 GeV. We do not pretend that we have a more accurate
estimate of the whole tower of excited states. The scheme we use is thought to
take the excited states into account in an average fashion. We showed that the
zeroth-order value of the axial nucleon charge is not changed much in the pres-
ence of meson cloud effects in consistency with chiral perturbation theory. As an
extension of previous work, which is dominantly aimed to describe the low-energy
static properties of baryons, we consider the model prediction for the axial charge
and for completeness also for the axial form factor. No further parameters are
adjusted in the present work.

In the present dissertation we proceed as follows. First, we describe the
basic features of our approach (the underlying effective Lagrangian, the unper-

turbed, that is valence quark, result for the nucleon description together with the
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choice of parameters) and a brief overview of perturbation theory when including
the meson fields. The full details of the renormalization technique can be found
in the Appendix and in Lyubovitskij, Gutsche and Faessler (2001). In chapter
ITI we concentrate on the detailed analysis of the nucleon axial form factor in our
approach. We derive analytical expressions in terms of fundamental parameters of
low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon
form factor) and of only one model parameter (radius of the three-quark core of
the nucleon). Finally, chapter IV contains the numerical results in comparison
with data which are presented to test the phenomenological implications of the
model. A summary of our major conclusions are displayed at the end of this

chapter.



Chapter 11

The Perturbative Chiral Quark Model

In this chapter we will give details of the perturbative chiral quark model.
Here, we describe the basic features of our approach: the underlying effective La-
grangian, the unperturbed, that is valence quark, result for the nucleon description
together with the choice of parameters and a brief overview of perturbation the-
ory when including the meson fields. The appropriate propagators for quarks and

mesons and the renormalization technique can be found as well.

2.1 Effective Lagrangian

Following considerations lay out the basic notions of the perturbative
chiral quark model (PCQM), a relativistic quark model suggested in Gutsche
(1987), Gutsche and Robson (1989), and extended in Lyubovitskij, Gutsche and
Faessler (2001), Lyubovitskij, Gutsche, Faessler and Drukarev (2001), Lyubovit-
skij, Gutsche, Faessler and Vinh-Mau (2001, 2002), for the study of low-energy
properties of baryons. In this model quarks move in an effective static field, rep-
resented by a scalar S(r) and vector V(r) component with Veg(r) = S(r)++°V(r)
and r = |Z|, providing phenomenological confinement. The interaction of quarks
with Goldstone bosons is introduced on the basis of the nonlinear o-model (Gell-
Mann and Lévy, 1960). The PCQM is then defined by the effective, chirally invari-

ant Lagrangian L, (Lyubovitskij, Gutsche, Faessler and Drukarev; Lyubovitskij,



13

Gutsche, Faessler and Vinh-Mau)

_ T —_ Ut
binle) = 9(0) {1 9=V = 50) |5 P 5 b u

F2
+ T [0.U U], (2.1)

with an additional mass term for quarks and mesons
_ B <y
Loss(a) = ~0(@)My(z) - 5 T{B2M], (22)

which explicitly breaks chiral symmetry. Here 1 is the quark field, U = e®/F the
chiral field with & being the matrix of pseudoscalar mesons (in the following we
restrict to the SU(2) flavor case, that is @ — # = 7 - 7), F' = 88 MeV the pion
decay constant in the chiral limit, M = diag{m, m} the mass matrix of current
quarks (we restrict to the isospin symmetry limit with m, = mg = m = 7 MeV)
and B = —(0|au|0)/F?* = 1.4 GeV is the low-energy constant which measures the
vacuum expectation value of the scalar quark densities in the chiral limit. We rely
on the standard picture of chiral symmetry breaking, and for the mass of pions
we use the leading term in their chiral expansion (i.e. linear in the current quark
mass): M? = 2mB.

With the unitary chiral rotation ¢ — exp{—iy?®/(2F)}¢ (Thomas, 1981;
Morgan, Miller and Thomas, 1986; Jennings and Maxwell, 1984) the Lagrangian
equation in Eq. (2.1) transforms into a Weinberg-type form £% containing the
axial-vector coupling and the Weinberg-Tomozawa term (Lyubovitskij, Gutsche,

Faessler and Vinh-Mau, 2001, 2002)(see details in Appendix B):

LY (x) = Lo(x)+ LY (x)+ o(7?), (2.3)
Cola) = B){i D= 500 =2V o) - 57(0) (24 M2) (o),
V(@) = SR ) - ()0, (@) )y ().
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where L} () is the O(7?) strong interaction Lagrangian and O = §#9,,.

In our calculation we do a perturbation calculation in the expansion pa-
rameter 1/F (where F' is the pion leptonic decay constant in the chiral limit). We
also treat the mass term of the current quarks as a perturbation. Dressing the
baryonic three-quark core by a cloud of Goldstone mesons corresponds effectively
to the inclusion of sea-quark contributions. All calculations are performed at one
loop or at order of accuracy O(1/F? ).

We expand the quark field ¢ in the basis of potential eigenstates as

Z botlo (T)e e + Z dlyus()eo, (2.4)

where the expansion coefficients b, and dTﬁ are the corresponding single quark an-
nihilation and antiquark creation operators. The set of quark {u,} and antiquark

vg} wavefunctions in orbits o and [ is solutions of the static Dirac equation:
B
—iy%5 -V + FS(r) + V(r) — Eu| ua(Z) =0, (2.5)

where &, is the single quark energy.
The unperturbed nucleon state is conventionally set up by the product of
spin-flavor and color quark wavefunctions, where the nonrelativistic single quark

wavefunction is replaced by the relativistic solution uy(%) in the ground state.

2.2 Parameters of Model

For a given form of effective potential Vog(r) the Dirac equation in Eq. (2.5)
can be solved numerically. Here, for the sake of simplicity, we use a variational

Gaussian ansatz for the quark wavefunction given by the analytical form

UO(JL‘) = NO exp (_2_R2) .7 Xs Xf Xes (26>
ip ==
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where
3 ~1/2
NO = |:7T3/2R3 <1 + §p2>:| (27)

is a constant fixed by the normalization condition

/d?’fug(f) uo(7) = 1; (2.8)
Xs> Xfs Xe are the spin, flavor and color quark wavefunctions, respectively. Our
Gaussian ansatz contains two model parameters: the dimensional parameter R
and the dimensionless parameter p.
(0)

The parameter p can be related to the axial coupling constant g,’ calcu-

lated in zeroth-order (or three-quark core) approximation:

© O 2p? 5 (14 2y
_5(, _2 2.9
94 3( 11 gp2> s\ 73 ) (2.9)

where v = (1—2p?)/(14 3p?) is a relativistic reduction factor. In our calculations

we use the value gg)) = 1.25 as obtained in the chiral limit of chiral perturbation

theory (Gasser, Sainio and Svarc, 1988) which gives the parameter p = 1/2/13.
The parameter R can be physically understood as the mean radius of the
three-quark core and is related to the charge radius of the proton in the leading-

order (or zeroth-order) approximation as

2 5 2
2\P 5o trm=2 o SR 1 4 5p
<TE>LO = /d ru (CE’)ZL’ Uo(l‘) = TT%

(2.10)

Therefore we have only one free parameter, R. In the numerical evaluation
R is varied in the region from 0.55 fm to 0.65 fm corresponding to a change of
<T125>§o in the region from 0.5 fm? to 0.7 fm?.

The use of the Gaussian ansatz Eq. (2.6) in its exact form restricts the

scalar and the vector parts of the potential to

1-3p° P 2

S(r) = R + 5’ (2.11)
1+ 3p? P 2
= — 2.12
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where the single-quark energy & is a free parameter in the Gaussion ansatz.

2.3 Perturbation Theory in the PCQM

According to Gell-Mann and Low theorem the expectation value of an

operator O in the PCQM takes the form

(©O) =onl > o [t [ T2 () £ @)Ol)] . (213

The subscript ¢ refers to contributions from connected graphs only, and LY () is
the pion-quark interaction Lagrangian as indicated in Eq. (2.3). The superscript
N in Eq. (2.13) indicates that the matrix elements are projected on the respec-
tive nucleon states, the explicit form of the nucleon wavefunction |N) is given in
Appendix E. The projection of “one-body” diagrams on the nucleon state refers

to

. 3
X 7 x s 22 (NS )@ |NY, (2.14)

=1

where the single-particle matrix element of the operators I and J, acting in fla-

vor and spin space, is replaced by the one embedded in the nucleon state. For

“two-body” diagrams with two independent quark indices ¢ and j the projection
prescription reads as

Proj ’
X T8 xpxe @ xExh 5 T8 xaxe =2 (N (L)Y @ (I )9 |N).
i ]
(2.15)
We evaluate Eq. (2.13) using Wick’s theorem and the appropriate prop-

agators. For the quark field we use a Feynman propagator for a fermion in a

binding potential. The quark propagator iGy(z,y) is given by
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iGy(z,y) = (bo| T{L(@) V(1) }do) = Y _ tta(¥)ta(F) exp[—ifa(xo — yo)(z0 — vo),

: (2.16)
where we restrict to the quark states propagating forward in time. The explicit
form of the excited quark wavefunctions is obtained analytically as given in Ap-
pendix D. For the meson we use the free Feynman propagator for a boson field
with

d*k  exp[—ik(z — y)]
(2m)4 M2 —k? —ie

iAij(x —y) = (0| T{®@i(2)®;(y)}0) = 0 (2.17)

2.4 Renormalization of the PCQM

We follow the formalism set out in Lyubovitskij, Gutsche and Faessler
(2001), where in present work intermediate excited quark states are included in
the loop diagrams (see details in Appendix G). Here we briefly describe the
basic ingredients relevant for the further discussion. In the following, we attach
the superscript “0” to the renormalization constants when we restrict to the
contribution of the ground state quark propagator and the superscript “ F'” when
the excited states are included.

First we introduce the renormalized quark field ¢"(x). It can be expanded
in a set of potential eigenstates which are solutions of the renormalized Dirac

equation with the full renormalized quark mass of

31 o 1
= i) Z/ W ) + AL
x| Fr, (R)FY (k) = 20(k) Fr, (k)Ffy () + w2 (k%) Fi, (R)Fy (k)] - (2.18)

The expression for the renormalized quark mass includes self-energy corrections
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of the pion cloud, where
Fr. (k) = NoN.k [/ dr? (go(r)ga(r) — fo(r) fa(r)) / dQe* " C,Y,,0(0, ¢)
0 Q

9i / " drr (folr) falr) / 402 cosh e O Y, 0(0,0) |, (2.19)
0 Q

Ok

9 [ |
Fi(k) = NoNoo /0 dr 7 (go(r) falr) — folr)ga(r)) /Q Qe Y, (0. 6),

(2.20)

with the pion energy w(k?) = /M2 +k2; k = |k| is the pion momentum and
A&, = &, — & is the excess of the energy of the quark in state a with respect to
the ground state. The label o = (nl,jm) characterizes the quark state (principal
quantum number n, non-relativistic orbital angular momentum [,, total angular
momentum and projection j,m). For the Clebsch-Gordan coefficients we use the
notation C, = (l,051|73) and Y, (6, ) is the usual spherical harmonic. The
explicit form of the radial wave functions g,(r) and f,(r), of the normalization
constants N, and of the energy difference A&, are given in Appendix D.

When restricting the quark propagator to the ground state the expression

above for the renormalized quark mass reduces to

2
A A 27 g,(f) > 4 F2NN(]€2)
b=m—-——_== dk k* —————= 2.21

where Fny(k?) is the TN N form factor normalized to unity at zero recoil (k? =

k2 R? k2 R? 5
F Nk = — 1 1— . 2.22
NN( ) eXp( 1 > + 3 < 3g£?) )] ( )

In the second step we renormalize the effective Lagrangian including a set

0):

. . . . Wi st W
of counterterms. The renormalized interaction Lagrangian £}, = £} )5+ £ "

contains a part due to the strong interaction,

EII/I;/;str — £IIA/;str +§£W;str, (223>
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and a piece due to the electromagnetic interaction,
cyiem = cfiem 4 schiem, (2.24)

The strong interaction term £*" is given by

LV () = %@ﬁ(ﬁ)?ﬁr@)v“fﬁﬂ“@ - %m(x)auwj(x)w_r(l‘)v"mwr(x).

(2.25)
The interaction of pions and quarks with the electromagnetic field is described by

(Lyubovitskij, Gutsche, Faessler and Vinh-Mau, 2001, 2002)

LM (@) = —eAmYT(@)Qyy ()
€ em Ir = - = r
L A ) (@) (7 @) — 7 () 7r(w)] ¥ ()
mi(x) -
e ey |m(@)P () — G () () | (226)
which is generated by minimal substitution with
o" — D" = 9" +1eQATYT, (2.27)
8#77'1' — D#ﬂ'i = aﬂm + 653ijAZm7Tj7 (228)

where @ is the quark charge matrix with @) = diag{2/3, —1/3}. The set of coun-
terterms, denoted by §£"35" and 6LV ™ are explained and given in Appendix G
and Lyubovitskij, Gutsche and Faessler (2001).

Now we consider the nucleon charge and prove that the properly introduced
counterterms guarantee charge conservation. Using Noether’s theorem we first

derive from the renormalized Lagrangian the electromagnetic current operator:
I I Sl S S IS Y I (2.29)

It contains the quark component jf;m the charged pion component j¥, the quark-
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pion component jgw and the contribution of the counterterm ¢ jg,.:

. Ty r 1 —r r Jr T
J = QU = g (2T — ), (2.30)
Jr = esy(mdimy) = m 10wt — atidtT (2.31)
. 1 T — - = r Ty Ihr T
],Zrﬂ- = —miﬂ ¥ (7T273 -7 TWO) Y — e3i 2}¢ 7“757'z‘¢ ) (2.32)
b = U(Z = 1)y"Qu". (2.33)

Here Z is the renormalization constant determined by the nucleon charge con-
servation condition (Lyubovitskij, Gutsche and Faessler, 2001). The analytical

expression for the full renormalization constant Z is

oF 49 * 2 1
2 =1 (47TF)2;/0 dk w(k?)(w(k?) + A&, )?

x| Fr (k) F (k) = 20(k) By, () F, (k) + w*(K) Fy, (R)F}y, (K)| - (2:34)

When restricting intermediate quark states to the ground state Eq. (2.34) yields

the result ,
A 27 (g9 N\ [ 4 F2yn(K?)
20=1-— 24 dk k* =NV S 2.
400 <7TF /0 w3(k?) (235)

We obtain a value of Z° = 0.9 & 0.02 (Lyubovitskij, Gutsche and Faessler, 2001)
for our set of parameters. Inclusion of the excited quark states changes the value

of the renormalization constant to a value of ZF = 0.7 + 0.05.



Chapter II1

The Axial Form Factor of the Nucleon

For the present purposes we have to construct the partially conserved axial-

vector current A% (see detail in Appendix H):

1
4F?

(2 — 1)7“75%W + o(7Y). (3.1)

Iy Ti r Eijk Tr T 7 - = - r
Al = FOm Gy U = SR TR+ it (R P - R v

The axial form factor G4(Q?) of the nucleon is defined by the matrix element
of the i = 3 isospin component and the spatial part of the axial vector current
evaluated for nucleon states. In the Breit frame G4(Q?) is set up as (Tegen and

Weise, 1983):

(0 (9) | #2ereiio

with the space-like momentum transfer squared given as Q? = —¢®> = ¢2. Here,

q N S ™ 2
V(9)) i T Ga@). 62

xn, and xn_, are the nucleon spin wave functions in the initial and final states;
Fy is the nucleon spin matrix and 73 is the third component of the isospin matrix
of the nucleon.

At zero recoil (Q% = 0) the axial form factor satisfies the condition:

GA(O) = ga, (33)

where g4 is the axial charge of the nucleon.
For low-momentum transfers, that is Q? < 1 GeV?, the axial form factor

can be represented by a dipole fit

G A(0)

Ga(Q*) = @7 (3.4)



22

in terms of one adjustable parameter M4, the axial mass (or sometimes dipole

mass). Therefore, the axial radius can be expressed in terms of the axial mass

with:
1 dG4(Q? 12
(rh) =6 i (3:5)
Ga(0) dQ Q2=0 M
In the PCQM the axial form factor of the nucleon up to one loop corrections
is given by

3

2 .,
- T 1 —igz
XR,SIONTNXNSGA(QQ) = Ngyl 7?:0 ] / S(t)d*'vd*z, ... d*r,e™

XTILY S (1) oo LY () As(2)] |60) ), (3.6)

with the interaction term

£V (@) = O R @) @ T () — e (@)D (e (el (2,
(3.7)
where the superscript r refers to renormalized quantities.

From the works of Lyubovitskij, Gutsche and Faessler (2001), Lyubovit-
skij, Gutsche, Faessler and Drukarev (2001), Lyubovitskij, Gutsche, Faessler and
Vinh-Mau (2001), Lyubovitskij, Wang, Gutsche and Faessler (2002), Simkovic et
al. (2002) and Pumsa-ard, Lyubovitskij, Gutsche, Faessler and Cheedket (2003)
they conclude that the use of a truncated quark propagator leads to a reason-
able description of the experiment. The excited quark states in propagator of Eq.
(2.16) were included for the first time by Pumsa-ard et al.(2003) to analyze their
influence on the matrix elements for the N — A transition.

Here we follow the formalism set out in Pumsa-ard, Lyubovitskij, Gutsche,
Faessler and Cheedket (2003). In the final calculation we include a set of excited
states up to 2hw in the quark propagator: the first p-states (1p1/» and 1ps, in the

non-relativistic spectroscopic notation) and the second excited states (1ds /s, 1ds/2
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and 2s1/2). In other words we include the excited states whose energies satisfy
the restriction £ < A = 1 GeV (see discussion in the Chapter I). The diagrams
to be evaluated are shown in Fig. (3.1).

Next, we present the analytical expressions for the axial form factor of the
nucleon obtained in the PCQM. We start with the simplest case, where the quark
propagator is restricted to the ground state contribution. The axial form factor of
the nucleon is a sum of terms arising from different diagrams: the three-quark di-
agram (Fig. 3.1(a)), the counterterm (Fig. 3.1(b)), the self-energy diagram (Figs.
3.1(c) and (d)), the exchange diagram (Fig. 3.1(e)) and the vertex-correction di-
agram (Fig. 3.1(f)). Other possible diagrams at one loop are compensated by the
counterterm. The corresponding analytical expressions for the relevant diagrams
are given in the following:

(a) For the three-quark diagram (3¢) (Fig. 3.1(a)) we obtain:

Ga(@)],, = Ga@)], + Gal@)],,), (3:8)
with
Gal@)]y = gV Faxn(@?) (3.9)
@ = gmg(lf—;)?{ (1 + gﬁ) Gal@)],) - % {12 (2 - 3p%)
—4(1+5p°) Q*°R* + p2Q4R4] exp (— sz) } (3.10)

where G4(Q?)[5° is the leading-order term (LO) evaluated with the unperturbed

NLO

quark wavefunction ug(Z); Ga(Q*)[5,° is a correction due to the renormalization

of the quark wavefunction ug(Z) — uf(#;m") which is referred to as next-to-

leading order (NLO).

The modified quark wavefunction u{(Z;m") is given by (Lyubovitskij,
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AN
|
—

(e) (f)

Figure 3.1: Diagrams contributing to the axial form factor of the nucleon: three-
quark core (a), counterterm (CT)(b), self-energy (SE)(c and d), exchange (EX)(e)

and vertex correction (VC)(f).
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Gutsche and Faessler ,2001)

ug(Z;m") = uo(Z) + due(z;m"), (3.11)
where
o 1,21 2 2
o m"  pR +5p x
) im’) = — 3.12
(i) = G (B - e w62

(b) The three-quark counterterm (CT) (Fig. 3.1(b)) results in the expres-
sion:
2 — (50 2y |LO
CAlQ)| oy = (20— 1)GA(@)|°. (3.13)

(c) The self-energy diagram I (SE;I) (Fig. 3.1(c)) yields:

R 1\? Fenn(k
Ga( @)y, =898 o (o) [ aer T D), (s

where

2\2 P2 3/2
Dk, Q%) = exp (‘<k+ \/4@—) : ) (k2Q12R4)
x [2+k\/@R2+eXp (k\/@m)( 2+/<;\/_RZ>} (3.15)

(d) For the self-energy diagram II (SE;II) (Fig. 3.1(d)) we also obtain:

Ga(Q?) Ga(Q?) (3.16)

’SE;H = ‘SE;I'

(e) For the exchange diagram (EX) (Fig. 3.1(e)) we get:

CA@py = 5 48 <2i§pz)<27ip> [Carn 2 o6y, )

(f) The vertex-correction diagram (VC) (Fig. 3.1(f)) gives the contribution:

3 1 2 eS] 2 L2
GA(QQ)Ivczm(gff))g(%—F) FWNN@?)/O dkk”‘%k(z)). (3.18)

In the next step we extend the formalism by also including excited states

in the quark propagator. The leading-order expression of the three-quark diagram
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and the exchange term remain the same. In turn the following contributions must
be extended.
(a) In the three-quark NLO expression the appropriate renormalized mass

has to be inserted with

NLO 3 ., pR 9 Lo 9
Gal@)]y, " = b )2 { (1 * §p2) Ca@ls, — 75 {12 (2=377)
2

—4 (1+5p") Q°R* + p2Q4R4] exp (—Q1R2> } (3.19)

(b) For the three-quark counterterm (CT) the renormalization constant

has to be replaced accordingly
(@)]or = (2" = 1DCA@)], (3.20)
A cT A 3q :
(c) For the self-energy diagram I (SE;I) we obtain the full expression

> 10 gw k‘2 Fna(k?) Fy, (k)
Ga(@Q )‘SE;I - (47TF) Z/ dkk E2)(w(k?) + AE&,)

/1 2]{3(1—1’ F[]]a <\/ {L‘—f- 1—2.17 k’) F]Va(k}_)
X

- NG ’
(3.21)
where
Fr, (k) = NoNa;%/Doodrr(go(r)fa(r))/gdfzeikTCOS@CQYQO(Qa ),
(3.22)
a (o]
Fra(be) = NoNogie [ drr (olnga(r) = sl fo(r)
X / dQ e C Y, (0, 8), (3.23)
Q
2= B+ Q4 2k\/Q?x. (3.24)
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(d) For the self-energy diagram II (SE;II) we get

2 10 o W kz FITI (k) — FT <k)
GA(Q )|SE;II = <47TF> Z/ dk k (k2)+A5 )

x/ld 2k(1 — 2®)Fy, (ky) — (/Q%*x + k) Fry, ( k+)
T

1 VEkD
(3.25)
where
Fy, (ky) = NoN, ai / drr (fo(r)ga(r)) / dQe™+"0CY o(0,¢).  (3.26)
+ Q
(e) For the vertex-correction diagram (VC) inclusion of excited states re-
sults in

2 . 5fa, (Q2> - 2 1
A@)]ye = §§—<4£F>2 /0 dk k [w(k;2)(w(k:2)+A8a) (w(k2)+AEg)]

x [w?(k?) (Fu, (0) L, (k) ) =eo(k?) (Fus, (K)E () + Fi, () FL (k) )

+ (P () F], (k) } (3.27)
where
Faps@) = NN /0 Oodrr2<,4a,ﬁ(r)+28aﬁ(r)>, (3.28)
Aaal) = (0a(r)as(r) = Fulr) o) [ a2 exp (iv/@rcost) Cona(6.0)
(3.29)

Bog(r) = fa(r)fs(r) / dQ) exp (i\/@rcosﬁ)
Q
X |:C0829 Copa (0, @) + sin b cost Cop.2(0, ¢)1 , (3.30)
Caﬁ;l<9> ¢) = CaCBYQO(ea ¢)Y250(‘9a ¢) - DaDﬁYizl(a ¢)Y251(67 ¢)7 (331)
Caﬁ;Z(ea ¢) = CaDﬁYiaO(ea ¢>Y251(07 ¢)e_i¢ + DaCﬂYEzl(ga ¢)Y250(97 ¢)161¢a(332)

where D, = <la1— ——| 32> lo and lg are the orbital quantum numbers of the

intermediate states a and 3, respectively.



Chapter IV

Results and Discussion

4.1 Results

The @Q?-dependence (up to 0.4 GeV?) of the axial form factor of the nucleon
are shown in Figs. (4.1), (4.2) and (4.3), the description of each figure is given
below. Due to the lack of covariance, the form factor can be expected to be
reasonable up to Q? < p% = 0.4GeV?, where ' is the typical three-momentum
transfer which defines the region where relativistic effect < 10% or where the
following inequality p?/ (4m%) < 0.1 is fulfilled.

The first result for the @Q*-dependence of the axial form factor G4(Q?)
of the nucleon is indicated in Fig. (4.1). The numerical values are obtained,
when truncating the quark propagator to the ground state or equivalently to the
intermediate nucleon and delta baryon states in loop diagrams. Thereby, we also
give the individual contributions of the different diagrams of Fig. (3.1), which add
up coherently. The leading order three-quark diagram dominates the result for
the axial form factor, whereas pion cloud corrections add about 20% of the total
result. Here, both the exchange and self-energy terms give the largest, positive
contribution.

In the next step we include the intermediate excited quark states with
quantum numbers 1p; /2, 1p3/2, 1d3/2, 1ds/2 and 2s1/2 in the propagator. The re-
sulting effect on G 4(Q?) is given in Fig. (4.2). We explicitly indicate the addi-

tional terms, which are solely due to the contribution of these excited states. The
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Figure 4.1: Model results for the axial form factor of the nucleon G4(Q?). The
coherent contributions of the different diagrams of Fig. (3.1) are indicated when

restricting to the ground state(GS) quark propagator.
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Figure 4.2: Model results for the axial form factor of the nucleon G 4(Q?) when

excited states are included in the quark propagator. The full ground-state result

is contained in the curve labelled by Total(GS). Excited state(ES) contributions

of the individual diagrams are indicated separately.
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previous result, where the quark propagator is restricted to the ground state, is
contained in the curve denoted by Total(GS). The inclusion of the intermediate
excited states tends to induce a cancellation of the original pion cloud corrections
generated for the case of the ground state quark propagator, thereby regaining
approximately the tree level result. In Fig. (4.3) we give for completeness the
full result for G4(Q?) including excited states in comparison with experimental
data and with the dipole fit using an axial mass of M4 = 1.069 GeV and normal-
ized to G 4(0) = 1.267 at zero recoil. The model clearly underestimates the finite
Q*-behavior, but it should be noted that a similar effect occurs in the discussion
of the electromagnetic form factors of the nucleon (Lyubovitskij, Gutsche and
Faessler, 2001). The stiffness of the form factors can be traced to the Gaussian
ansatz of the single quark wave functions and can also be improved when in addi-
tion resorting to a fully covariant description of the valence quark content of the
nucleon (Ivanov, Locher and Lyubovitskij, 1996). Hence the applicability of the
PCQM is mostly for static quantities and low ) observables of baryons.

For the comparison with the data near Q? = 0 we first turn to the results for
the axial charge, g4. In Table (4.1) we list the numerical values for the complete set
of Feynman diagrams (Fig. (3.1)), again indicating separately the contributions
of ground and excited states in the quark propagator.

The prediction for the axial charge including loop corrections are relevant
for several reasons:

(i) the tree level result for g4 was previously adjusted to fix one of the
parameters, p. Since loop corrections essentially do not change this results, the
previous model predictions remain meaningful;

(ii) the predicted small loop corrections to g4 are consistent with similar

results in chiral perturbation theory;
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Figure 4.3: The axial form factor of the nucleon in the PCQM in comparison with
a dipole fit (axial mass M4 = 1.069 GeV) and with experimental data. Data are
taken from Refs.(Amaldi et al., 1970, 1972; Bloom et al., 1973; Brauel et al., 1973;

Guerra et al., 1975; Esaulov, Pilipenko and Titov, 1978)
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Table 4.1: Contributions of the individual diagrams of Fig. (3.1) to the axial
charge g4. Separate results for the inclusion of ground (GS) and excited states

(ES) in the quark propagator are indicated.

ga
GS quark propagator
3q-core
LO 1.25
NLO —0.062 £ 0.013
Counterterm —0.120 £ 0.024
Exchange 0.228 £0.042
Vertex correction 0.013 £ 0.003
Self-energy 0.190 £ 0.034
GS contribution 1.499 + 0.042
ES quark propagator
NLO —0.315 £ 0.054
Counterterm —0.249 £ 0.044
Vertex correction 0.031 £ 0.005
Self-energy 0.220 + 0.038
ES contribution —0.314 £ 0.055
Total(GS+ES) 1.185+0.013

Experiment 1.267 + 0.003
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Table 4.2: Comparison of the axial mass and the axial radius between experimental

values and the result from the PCQM.

Model Experiment
M, (GeV) 0.779 = 0.050 1.069 + 0.016
(r2)"? (fm) 0.881 £ 0.056 0.639 £ 0.010

(iii) the generic role of excited states in loop diagrams are rather relevant
in understanding the nucleon properties. This role was already exemplified in
the case of N — A transition (Pumsa-ard, Lyubovitskij, Gutsche, Faessler and
Cheedket, 2003) and sigma-terms (Inoue, Lyubovitskij, Gutsche and Faessler,
2004) and again is demonstrated in the case of g4.

A comparison of the experimentally deduced values for the axial mass and

the axial radius with our model results is given in Table (4.2).

4.2 Summary

In summary, we have evaluated the axial form factor of the nucleon and,
more important, its low Q2 limits, such as the axial charge and the axial radius
using a perturbative chiral quark model as based on an effective chiral Lagrangian.
Since the PCQM is a static model, Lorentz covariance cannot be fulfilled. Ap-
proximate techniques to account for Galilei invariance and Lorentz boost effects
were shown to change the tree level results by about 10%. Higher order, that is
loop contributions, are less sensitive to these correction. The derived quantities
contain, in consistency with previous works, only one model parameter R, which

is related to the radius of the three-quark core, and are otherwise expressed in
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terms of fundamental parameters of low energy hadron physics: weak pion de-
cay constant, and set of QCD parameters. In addition, another parameter (p
of Eq. (2.5)), which is related to the amplitude of the small component of the
single quark wave function, was originally set up to reproduce the value for the
axial charge in the chiral limit with gg]) = 1.25 (Gasser, Sainio and Svarc, 1988).
Predictions are given for the fixed values of model parameters p and R in consis-
tency with previous investigations. In particular, our result for the axial charge,
ga = 1.185 £ 0.013, is in reasonable agreement with the central value of data:
ga = 1.267 4+ 0.003. Thereby, contributions of excited quark states in loop dia-
grams play a considerable role in order to generate a small correction to the tree
level result, which is required to account for the data point. This result, obtained
in the context of the PCQM, is rather encouraging. Minor pion cloud corrections
to the tree level result of g4 justify in turn the appropriate choice for p or for gf)
used in previous works. Also, recent calculations of the axial charge up to order
p* in chiral perturbation theory (Kambor and Mojzis, 1999; Schweizer, 2000) im-
ply rather large p3 corrections leading to rather large uncertainties when going to
the next order in the chiral expansion. Our model result can naturally explain
the small correction to the one obtained in the chiral limit, but only when going

beyond nucleon and delta states in the loop diagrams.
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Appendix A

Quantum Chromodynamics and Chiral

Perturbation Theory

Chiral perturbation theory (ChPT) provides a systematic framework for
investigating strong-interaction processes at low energies, as opposed to a pertur-
bative treatment of quantum chromodynamics (QCD) at high momentum trans-
fers in terms of the “running coupling constant”. The basis of ChPT is the global
SU(3), x SU(3), symmetry of the QCD Lagrangian in the limit of massless u,
d, and s quarks. This symmetry is assumed to be spontaneously broken down
giving rise to eight massless Goldstone bosons. In this appendix we will give an
overview of the foundations for ChPT which is the chiral effective Lagrangian.
The method for including the external field to the Lagrangian and the lowest

order of the ChPT are also indicated at the end.

A.1 The QCD Lagrangian

The gauge principle has proven to be a tremendously successful method in
elementary particle physics to generate interactions between matter fields through
the exchange of massless gauge bosons. The best-known example is quantum elec-
trodynamics (QED). In QED the interaction between charged particles is medi-
ated by the exchange of neutral gauge bosons, photons. Because of the neutrality
of the photon there do not exist vertices where a photon interacts directly with

another photon. Therefore in QED only a single vertex is required, the coupling
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of the photon to a fermion. The coupling constant, e, in QED is related to the
fine structure constant via o = e*/4m ~ 1/137, and because of the smallness of
the theory can be successfully treated perturbatively.

The remarkable success of QED leads quite naturally to a nonabelian gen-
eralization involving a triplet of color-charges interacting via the exchange of color
gauge bosons called gluons. This is the theory of QCD which is the gauge theory
of the strong interactions. The matter fields of QCD are the so-called quarks
which are spin-1/2 fermions, with six different flavors in addition to their three
possible colors.

The QCD Lagrangian obtained from the gauge principle reads

1
Loop = > @i —my)ar — 1Ymaba- (A1)

f:usd7sv
c,b,t

For each quark flavor f the quark field ¢ consists of a color triplet (subscripts r,

g, and b standing for “red”, “green”, and “blue”),

qf.r
ar = df.g ) (AQ)
dfp
and the covariant derivative of gy is
dfr qf.r qf,r
8 \C
Du df.g - 8“ 4f.g — 19 Z 7“4;1@ df.g . (A3)
a=1
drb qf.p dfp

We note that the interaction between quarks and gluons is independent of the
quark flavors. Equation (A.1) also contains the generalization of the field strength

tensor to the nonabelian case,

g,uy,a = a,uAu,a - a1/~/4,u,a + gfabcAu,bAl/,a (A4>
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where fq. is the SU(3) structure constants and A, is the gluon field.

In contradistinction to the abelian case of QED), the squared field strength
tensor gives rise to gauge-field self interactions involving vertices with three and
four gauge fields of strength ¢ and g2, respectively. Such interaction terms are
characteristic of nonabelian gauge theories and make them much more compli-
cated than abelian theories. These difficulties have heretofore prevented a precise
confrontation of experiment with rigorous QCD predictions. Nevertheless there
are at least two cases in which these problems can be ameliorated and reliable

theoretical predictions can be generated from QCD:

e High energy limit: At very high energies, when the momentum transfer
q? is large, QCD becomes “asymptotically free”, i.e. the running coupling
constant g(q*) approaches zero. Hence, in this limit one can utilize per-
turbative methods. However, this procedure, “perturbative QCD”, is not

useful except for interactions at the very highest energies.

e Symmetry: The second way to confront QCD with experimental test is to
utilize the symmetry of Locp. In order to do so, we separate the quark
components into two groups. That involving the heavy quarks, ¢, b and
t, we shall not consider further in these dissertation. Indeed the masses of
such quarks are much larger than the QCD scale, Aqcp ~ 300 MeV, but
can be treated using heavy-quark symmetry methods. On the other hand,
the light quarks, u, d and s, have masses much smaller than the QCD scale
and their interactions can be analyzed by exploiting the chiral symmetry of
the QCD Lagrangian as will be shown further below. As we shall see, this
procedure is capable of rigor but is only useful for energies £ < 1 GeV, low

energy method.
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A.2 Global Symmetries of Lqcp

The six quark flavors are commonly divided into the three light quarks u,

d, and s and the three heavy flavors ¢, b, and ¢,

m,, = 0.005 GeV me = (1.15 — 1.35) GeV
mg =0.009GeV | <1GeV < my=(4.0—-44)GeV |,  (A5)
me = 0.175 GeV my = 174 GeV

where the scale of 1 GeV is associated with the masses of the lightest hadrons
containing light quarks, e.g., m,= 770 MeV, which are not Goldstone bosons
resulting from spontaneous symmetry breaking. The scale associated with spon-
taneous symmetry breaking, 47 F, =~ 1170 MeV, is of the same order of magnitude,
where F}. is the pion decay constant.

In the following, we will approximate the full QCD Lagrangian by its light-
flavor version. The Lagrangian EOQCD, containing only the light-flavor quarks in
the so-called chiral limit m,,, mg, ms — 0, might be a good starting point in the

discussion of low-energy QCD:

. 1 ,
‘C%CD = Z (jlllp q — Zlglu,u,agéf . (A6)

l=u,d,s
We repeat that the covariant derivative ) ¢, acts on color and Dirac indices only
but is independent of flavor.
In order to fully exhibit the global symmetries of Eq.(A.6), we consider
01243

the chirality matrix v5 = 7° = i7%9'y*y3, {v#,75} = 0, 72 = 1, and introduce

projection operators

1 1
Pr = 5(1 —|—75) = P}Tg; P = 5(1 - 75) = PL (A7)

where the indices R and L refer to right-handed and left-handed, respectively.

Obviously, the 4 x 4 matrices Pg and Pj, satisfy a completeness relation:

Pr+ P, =1, (A.8)
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are idempotent, i.e.,
P2 = Pg, P} =Py, (A.9)
and respect the orthogonality relations
PrP;, = P,Pr = 0. (A.10)

The combined properties of Egs. (A.8)-(A.10) guarantee that Pr and P are
indeed projection operators which project from the Dirac field variable ¢ its chiral

components qg and ¢y,

qr = Prgq, qr, = Prq, (A.11)

qr = qPr, qr = qPg (A.12)
and one can write the quark field into
q:(PR+PL)q:PRq+PLq:qR+qL. (AlS)

Our goal is to analyze the symmetry of the QCD Lagrangian with respect to
independent global transformations of the left- and right-handed fields. In order
to decompose the 16 quadratic forms into their respective projections to right-

and left-handed fields, one can show that

qrl'qr +qrl'iqr for I'y € {#, "y
qliq = 1 1 €4 o} : (A.14)
qrl'2qr + qrl2gr for Ty € {1,750}

We now apply Eq. (A.14) to Eq. (A.6) the QCD Lagrangian in the chiral

limit, which can then be written as

. . 1 )
'C?QCD = Z (qriilD qry + qrilp qri) — Zguy,agfj . (A.15)

l=u,d,s
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Due to the flavor independence of the covariant derivative Lqp is invariant under

uy, ur, ur,

8

. Aa

di | = ULl d | =exp (—12 @(IL?> dr | > (A.16)
ST, ST, ST
UR UR UR

LI
dp | = Ur| dr | =exp (—1; @f;) dr | > (A.17)
SR SR SR

where U, and Upg are independent unitary 3 x 3 matrices. Note that the Gell-
Mann matrices, )., act in flavor space. According to Noether’s theorem, which
states that an invariance of the Lagrangian density is associated with a conserved
quantity, one obtains the currents associated with the transformations of the left-

handed or right-handed quarks

)\a

L = a5, .M =0, (A.18)
)\a

RM = QRWH—Q qR, @LR"““ =0. (A19)

Instead of these chiral currents one often uses linear combinations,

2@
Vu,a — RM,G + LH® — q,y,u?q7 8uvu,a — 0’ (A20)
2@
AR = RMC— LM = P g, 0 A =0, (A.21)

which are vector and axial vector current, respectively.
Egs. (A.18)-(A.21) state that the QCD Lagrangian in the limit of massless
u, d, and s quarks (chiral limit) has the global SU(3), x SU(3), symmetry or

SU(3),, x SU(3) 4, which is the best symmetry for strong interaction.

A.2.1 Chiral Symmetry Breaking due to Quark Masses

The preceding discussion concerns the fictitious world where all of the quark

masses are set equal to zero. In reality, the Lagrangian of QCD contains a quark
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mass term. Let us consider the quark mass matrix of the three light quarks,

m, 0O 0
M = 0 my 0 |- (A.22)
0 0 mg

In particular, applying Eq. (A.14) we see that the quark mass term mixes left-

and right-handed fields,
Ly =—qMq=—(qrMqr + qrMqgr). (A.23)

From L,; one obtains as the variation L), under the transformations of Eqgs.

(A.16) and (A.17),

8 8
: _ g A A _ e
0Ly = —i ; of (QR?MQL - QLM7QR) —l—az:; ok (QL?MQR - QRM?(]L)]a
(A.24)
which results in the following divergences,

a 86£M . _ )\a — )\a
9, LM = oL —i (QL?MQR - QRM?(]L) ; (A.25)

u 00 Ly - A _
O, R = 967 = 1 (QR?MQL - QLM?(]R) - (A.26)

Again, using a linear combination as Eq. (A.20) and Eq. (A.21) the corresponding

divergences for vector and axial vector read

8NV“”I = 1@[M7 %](L <A27)
A W e s
9 At =1 QL{?u M}qr — QR{?7 M}y ) = 161{77 M}v°q. (A.28)

We are now in the position to summarize the various (approximate) symmetries of
the strong interactions in combination with the corresponding currents and their

divergences.

e In the limit of massless quarks, the sixteen currents L** and R*® or, alter-

natively, V#® and A"“ are conserved.
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e For equal quark masses, m, = mg = mg, the eight vector currents V*¢
are conserved, because [A,,1] = 0. The eight axial currents A" are not
conserved. The divergences of the octet axial-vector currents of Eq. (A.28)
are proportional to pseudoscalar quadratic forms. This can be interpreted
as the microscopic origin of the PCAC relation (partially conserved axial-
vector current) which states that the divergences of the axial-vector currents
are proportional to renormalized field operators representing the lowest lying

pseudoscalar octet.

A.3 Linear Sigma-Model

The field theoretical restoration of chiral symmetry in a Lagrangian with
a symmetry breaking mass term for the fermions is realized by the o-model,
which had been introduced long before the emergence of QCD. By introduc-
ing phenomenological scalar-isoscalar and pseudoscalar-isovector fields o and
7i(i = 1,2,3), respectively, the simplest linear sigma-model based on chiral sym-

metry is defined as
_ _ L. 1 . .
Lrs = i 0" — g0 (0 +i7 - 79°) ¥ + 5 [(0u0)" + (0,7)°] — U0, 7) (A.29)
where
- A 2 | =22 22
U(o,T) = T (c*+7—f3)". (A.30)

Here, the field operator 1 represents the isospin doublet of u and d quarks. The
chiral-symmetric Lagrangian density leads to a conserved axial current

7_7,

5 Y+ o0, — 70,0, (A.31)

A =y

with 9" Ai, = 0.
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In order for the system to be stable, g and \ are positive constants. When
treating the boson fields classically, they are replaced everywhere by their vacuum
expectation values and U(o, ) plays the role of an effective potential. Since a
nonzero classical expectation value for @ would violate parity, we set () = 0.

Now two possibilities emerge: When fZ < 0, U(o, 7 = 0) has an absolute
minimum at oy = 0, in which case the quarks stay massless and the ¢ and 7 fields
become degenerate in mass. This manifestation of chiral symmetry in which the
physical states in the spectrum of L, are classified according to the irreducible
representations of the chiral symmetry group is referred to as the Wigner-Weyl
mode.

In the case f§ > 0, U(o, 7 = 0) has two minima at o9 = +f;. When ex-
panding the boson fields about either one of the equivalent minima, i.e. ¢ — o+ fy
and T — 7, the symmetry of the original Lagrangian density L, is hidden. With
the classical vacuum expectation value of the o-filed being nonzero, the fermions
acquire a finite mass term gog. Hence, chiral symmetry is dynamically broken.
The Goldstone theorem then requires the existence of a massless pseudoscalar-
isovector excitation, which in fact makes the 7 field massless. Thus, chiral sym-
metry, as manifested in the so called Nambu-Goldstone mode, is realized by two
massive fermions (quarks) and an isovector triplet of massless Goldstone bosons.

When making contact between the o model and a quark model with a
built-in confinement phenomenology, the quark mass term go can be identified as
a local mass, which is small for short distances from the baryon center and grows
towards infinity for large distances between the quarks. Thus, chiral symmetry
exhibits itself in the asymptotic freedom region in the Wigner-Weyl mode with
massless quarks and no bosons present, and in the confining region in the Nambu-

Goldstone mode with the occurrence of massless Goldstone bosons.
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While restricting ourselves to flavor SU(2), the massless pseudoscalar-
isovector Goldstone bosons, which are generated by spontaneous symmetry break-
ing, are identified with the only possible candidate, the pion. In principle, it can
be shown on very general grounds that in a chiral symmetric SU(2) x SU(2) world
the pion must appear as a Goldstone boson (with m, = 0). Since f; specifies the
mesonic piece of the axial current Eq.(A.31), it is identified as the pion decay

constant with fo = F; = 93 MeV.

A.4 Nonlinear Sigma-Model

One of the disturbing features of the linear sigma-model as in Eq. (A.29) is
the existence of the o- field, because it cannot really be identified with any existing
particle. Then we remove the o-meson by sending its mass to infinity. Formally
this can be achieved by assuming an infinitely large coupling A in the linear-sigma
model. As a consequence the potential gets infinitely steep in the sigma-direction.

This confines the dynamics to the circle, defined by the minimum of the potential,
o? + 1= F2 (A.32)

Therefore, the fields can be expressed in terms of angles &,

o(r) = F;cos (@éf)) = F, + O(p?), (A.33)
#(z) = F,$ sin (9"}?) = @(x) + O(&). (A.34)

Equivalently, one can choose a complex notation for the fields,

U(z) = exp {i?'fﬂ(x)} — cos (sog)) +i7 - @sin (‘P}f)) - Fiﬂ (0 +iF - 7).

(A.35)

Let us continue by rewriting the Lagrangian of the linear sigma-model, Eq.

(A.29), in terms of the new variables U or ¢. After a little algebra we find that
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the kinetic energy term of the mesons is given by
1 2 -2 Fr wrrt
5 [((%0) + (0,7) ] = ITr[GMUﬁ U'l]. (A.36)

Next, we realize that quark-meson coupling term can be written as
7 = 205 _ 7 ' S TP ¥
—g(o +iT- Ty’ = —gibq Fr |cos i +iy°T - psin i P

= —g¥ {Er exp <i’y57ﬁ;¢) } (0

—  —gFpAAY, (A.37)

where we have defined

A= i 5L(5 . A .38
o (7:9) -

If we now redefine the quark fields
Yw = A, w = PA, (A.39)
the interaction term Eq. (A.37) can be simply written as
—gF AN = =My ibyy . (A.40)
We also have to rewrite the quark kinetic energy term in terms of those fields.
Vi, 0" = Py Aliy, 0F ATy . (A.41)

After some straightforward algebra, one finds

Yw Ay, 0" Ay = Y (17,0" + vV, + vV AL ) w (A.42)

with
= % (£0,6" + €10,8) | (A.43)
A, = % (€067 — €10,¢) (A.44)

£ = exp (IZFf> (A.45)
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Putting everything together, the Lagrangian of the nonlinear sigma-model, which
is often referred to as the Weinberg-Lagrangian, reads in the above variables,
— F2
Ly = (i7,0" + V"V, + " A, — M) + Z”Tr(a#UaﬂUT ). (A.46)
Here we have dropped the subscript from the quark fields. Clearly, this Lagrangian

depends nonlinearly on the field ¢.

A.5 Chiral Effective Lagrangian

In this section, we briefly review how to construct the effective chiral
Lagrangian of the strong interactions following closely the work of Gasser and
Leutwyler (Gasser and Leutwyler, 1985). It is most economical to use the ex-
ternal field technique since it avoids any complication related to the nonlinear
transformation properties of the mesons. The basic objects to consider are cur-
rents and densities with external fields coupled to them in accordance with the

symmetry requirements.

A.5.1 QCD in the Present of External Sources

Following the procedure of Gasser and Leutwyler (Gasser and Leutwyler,
1984, 1985), we introduce into the Lagrangian of QCD the couplings of the nine
vector currents and the eight axial-vector currents as well as the scalar and pseu-

doscalar quark densities to external fields v*(z), a*(z), s(x), and p(z),
Lacp = LYep + Lext = LYep + 71 (V" +7°a")q — q(s —1y°p)q. (A.47)

The external fields are color-neutral, Hermitian 3 x 3 matrices, where the matrix

character, with respect to the (suppressed) flavor indices u, d, and s of the quark
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fields, is

8

8 8
vt = Z %v}j, at = Z %aﬁj, s = Z AaSas P = Z AaPa- (A.48)
a=0 a=0

a=1 a=1
The ordinary three flavor QCD Lagrangian is recovered by setting v* = a* =p =10
and s = diag(m., mg, ms) in Eq. (A.47).

If one defines the generating functional

exp(iZ[v, a, s,p]) = (0|T exp {i / d4x£ext(x)] 10), (A.49)

then any Green function consisting of the time-ordered product of color-neutral,
Hermitian quadratic forms can be obtained from Eq. (A.47) through a functional
derivative with respect to the external fields. The generating functional is related
to the vacuum-to-vacuum transition amplitude in the presence of external fields

(Gasser and Leutwyler, 1984, 1985),

exp(iZ[v, a, s, p]) = (Oout|Oin)v,a,5.ps (A.50)

where the dynamics is determined by the Lagrangian of Eq. (A.47).

Next, we need to discuss the requirements to be met by the external fields
under local SU(3), x SU(3) transformations. In a first step, we write Eq. (A.47)
in terms of the left- and right-handed quark fields. Besides the properties of Egs.

(A.8) - (A.10) we make use of the auxiliary formulae
VPr= Ppy’ = Pr, 7°Pp= Py’ =Py, (A.51)

and

YWPg = Py*,  A*Pp = Py, (A.52)

yielding for the Lagrangian of Eq. (A.47)

Lacp = Loep + @r™luar + @ey"ruar — @r(s +ip)ar — qu(s — ip)qr,  (A.53)
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where

1 1
Up = 5(7”# + lu)a Ay = 5(7"/1 - lu)- (A.54)

The Lagrangian Lqcp in Eq.  (A.53) remains invariant under local
SU(3)r, x SU(3)r transformations if the quark and external fields transform as

follows:

qr — Rqg, qr — Lqyr, (A.55)
r, — Rr,R'+iR0,R', (A.56)
l, — LLL'+iL0,L, (A.57)
s+ip — R(s+ip)LT, (A.58)
s—ip — L(s—ip)RT, (A.59)

with L, R are elements of SU(3), .
The effective meson Lagrangian follows from the low energy representation

of the generating functional
R,
exp(iZ[v,a, s, p|) = /[DU]e id* Lo (Usv,a,s,p) (A.60)

where the matrix U collects the meson fields. The low energy expansion is now

obtained from a perturbative expansion of the meson effective theory,
Log=Ly+Ly+---, (A.61)

where the subscript (n = 2,4, ...) denotes the low energy dimension (number of
derivatives and /or quark mass terms). The lowest order in this expansion will be

discussed.
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A.5.2 The Lowest-Order Effective Lagrangian

Let us construct the leading term (called L) in the low energy expansion

Eq. (A.61). The mesons are described by a unitary 3 x 3 matrix in flavor space,
Ut =1, detU = 1. (A.62)

The matrix U transform linearly under chiral symmetry,
U— RUL. (A.63)

To write down the Lagrangian, it is convenient to work with the quantity u rather
than with U itself (Schweizer, 2000). The matrix u(x) is related to the meson

field introduced above by

u? = U. (A.64)

The effective Lagrangian consists of two pieces,
Leg=Ly+ L, (A.65)

and explicitly involves the following quantities

D, = 8,+T,, (A.66)
r, = 5 [u ,Guu} — Ui = §uluu , (A.67)
w, = i{ul,0u} +ulru—ull, (A.68)
r, = vuta, l,=v,—a,, (A.69)
X+ = uxu'+uxTu, x=2B(s+ip). (A.70)

Considering the mesonic sector of the Lagrangian, only the meson field U(z) and

an even number of derivatives thereof are involved

Loy=LP+L+-. (A.T1)
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The superscript ¢ attached to E((;) denotes the low energy dimension of the La-
grangian. At leading order, the effective meson Lagrangian takes the following
form

F2
E((;) = ZTr[uMu“ + x+]- (A.72)

The physical significance of the low energy constants F' and B is given below. The

quark Lagrangian contains odd as well as even terms,
Lo=L0+ L8+ (A.73)
Again, at leading order, the effective quark Lagrangian yields
L) = G~ M) + S0, (A74)

containing the real parameter M. The quantity F' is the pion decay constant in
the chiral limit, the constant B occurs in the quark mass expansion of the physical
pion mass and M denotes the quark mass matrix.

Therefore, the well known leading order of the effective Lagrangian reads
- 1, F? i
Lo =1p(il) — M) + §1Mry Y+ ZTr[u”u + X+ (A.75)

On the other hand in our model, PCQM, we introduce the phenomenological
effective potential, Vg, as already mentioned in Chapter II, to confine quarks into

the nucleon. Then the leading order of the effective Lagrangian, Eq. (A.75) yields
- 0 1, F? "
Lo = 0P~V () — S(r) ~ M)+ L+ T el 4 v (AT

To calculate the higher orders of the effective Lagrangian, i.e. L4, a very
useful method the so called Weinberg’s power counting scheme is entering to the
chiral effective Lagrangian or chiral perturbation theory to determine the diagram
and the order of meson field to be expanded in the order we are interested in (see

detail in Scherer, 2003).
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Weinberg-Type Form of Effective Lagrangian

With the effective chirally invariant Lagrangian L;,, of Eq. (2.1) given as

Linte) = 30 (19— =500 [FEE 40T T

2 2

F2
+ T [0.U U, (B.1)

where U = ¢!®/F , and using the gamma matrix property, ¥°y° = 1, one can rewrite

the above equation into

Lin(@) = U@ {i 2=V (r) = S(r) exp {i°®/F } } v(a)

—l—FITr [0,U 0"UT]. (B.2)

With the unitary chiral rotation ¢ — exp{—if’i)/(ZF)}@D and again using the
gamma matrices properties, {v*,7°} = 0 and {7°,7°} = 0, the first term on the

right hand side of Eq. (B.2) results in

LY = oz ){1exp{—1fy5cl>/ 2F) } @exp{—175<1>/ (2F } 7OV (r) —S(r)}@/)(x)
2){i § -~V (r)} ¥(x) + P (@)ir {JA} (@), (B.3)

where A = exp{—iy"®/(2F)}.
Now we define ¢ = oié/(2F ), ¢t = e1%/CF) with the properties from Egs.

(A.7)-(A.13) and from the definition of A, £, ¥g and ¢, one can show that

M = &g, A = &Yy, (B.4)
YrA = YgE, YA =Pt (B.5)
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and with these properties

vV Pripip = £Pgp/pt) (B.6)

the interaction term between quark and meson field in Eq. (B.3) yields

GAPA)Y = A (D) (0 + o)
— DA (D) U+ ik (PA)
= Unt (i 9€7) ¥n + ¥rg' (i 96) vr
= e (1 pET) S04+ G 98 S (1 -7
= {5 (608 + 60,8+ 5 (€08 - 0,8 1 b

= ) {V,ﬂ“ + AM7“75} . (B.7)

Eq. (B.7) consist of two parts, vector and axial vector :

i

(£0,£" +£19,) (B.8)
(ga,ugT - {fa’ué") : (Bg)

Vi

DO =N

A

Finally, the effective chiral invariant Lagrangian in Eq. (B.2), after the unitary

chiral rotation of quark field, reads

Liny(x) = () {i @ =~V (r) = S(r)} o)+ {V' + A"y} o

F2
+Tr [0,U 0"UT] . (B.10)

When considering mesons as small fluctuations we restrict the interaction
Lagrangian up to the quadratic term in the meson field and we also restrict the
pseudoscalar meson to the SU(2) flavor case, that is d — 7 =77 the Lagrangian
in Eq. (B.10) transforms into a Weinberg-type form £V containing the axial-

vector coupling and the Weinberg-Tomozawa term, that is

LY (x) = Lo(x)+ LY (x)+ o(7?), (B.11)



with

Lo(z) = 1/1(3;){1 g—S(r)— ’yOV(r)}w(m) + %(9“7?(3;)8“7?(95),
1

LF(2) = SpOR@B@ P Rb(e) - Sl () (@) (e)y n(a)

where LY (z) is the O(7?) strong interaction Lagrangian.
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Appendix C

Gell-Mann and Low Theorem

We consider a system described by the Hamiltonian A which might be

written as
H=H,+ H; (C.l)

where Hy and Hj are respectively the free and interaction parts of the Hamil-
tonian. Let [¢)y) and |n) be the eigenstates of the free and full Hamiltonian,

respectively, one has

Hln) = E™n),

Holtho) = Eolto), (C.2)

hence

M) = Y e ) (i)

= ) Wle) + D e n) (nfto). (C.3)
n#0

Note that we have rewritten |0) and E© in the above equation respectively as

|1) and E, that is

Hly) = Ely). (C.4)

iFot

Multiplying the above equation by e'*°*, one derives

et yg) = e IEE ) () + D e I EE ) (n]ysg).  (C.5)
n#0
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Since EM™ > E for all n # 0, we can get rid of all the n # 0 terms in the series

by sending t to oo in a slightly imaginary direction ¢ — oo(1 — ie). Then the

—i(E=Eo)t {jes slowest and we have

' eiEote—th w
[y = lim —— T Eo) [t}
t—oo(1—ie) €71 0 <¢”¢0>
e1H( t)e—lHO |w0>
= lim E o)
t—oo(l—ic) €~ o)t (1)|1hg)
U(0, —t)[tho)

exponential factor e

= Hoggl_ie) =B (g o) (C.6)
Here we have used
Ulty, t) = el t-to)gmito(t=to) (C.7)
In the same way, we can derive
W= lim (¥o|U(%,0) ©8)

t—oo(l—ie) e~i(E—Eo)t <’(/)0|¢> .

Now we evaluate the expectation value of the operation O(z) = O(2°, Z) in the

state [1)

oDy = i STEOUE00 WU OV )
<77Z)|O(I 71‘)|w> - t~>olo(1715) i(E—Eo)t < O|¢> i(E—Eo)t <,¢)|¢0>
T s 0, D)
e B (o[

To get rid of the denominator in the equation, one may divide it by 1 in the form

o WU 0U©, 1))

(C.9)

L= ()= lm S e me| )P (10
Then finally we derive
(W02, ) |Y) = lim <¢0|U(t’xo)OI(I)U(IO’t”%). (C.11)

t—oo(l—ie) <w0|U<t7 _t>|1/}0>

The above equation holds for a product of arbitrarily many operators, for example,

for two operators

o {h|T {Oj(x)PI(y) exp[—ifft dzHI(z)]} )
(Y|ITO(x)P(y)|Y) = lim

| : (C.12)
sl (|1 {expl i 7, d=H ()] } o)



Appendix D

Solutions of the Dirac Equation

for the Effective Potential

In this section we indicate the solutions to the Dirac equation with the
effective potential Vg (r) = S(r) ++9°V(r) , with r = |Z|. The scalar S(r) and the

time-like vector V(1) parts are given by

S(r) = M; + Cyr?, (D.1)

V(r) = My + Cyr?, (D.2)
with the particular choice

M, = 1 ;p;pz’ (D.3)

My, = &-— 1;2’)2, (D.4)

e :cg:i% (D.5)

The quark wave function u, (%) in state « and eigenenergy &, with the specific

choice of Vg satisfies the Dirac equation
[—7°7 - V 4+ 9°S(r) + V(1) — EaJua(F) = 0. (D.6)

The solution of the Dirac spinor u,(Z) to Eq. (D.6) can be written in the analytical
form (Tegen and Brockmann, 1982; Pumsa-ard, Lyubovitskij, Gutsche, Faessler

and Cheedket, 2003):
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Where x; and x. are flavor and color part of the Dirac spinor, respectively. For the
particular choice of the potential, Eq. (D.1) and Eq. (D.3), the radial functions

ga(r) and f,(r) satisfy the form

. r lz+1/2 r? —2;;2
ga(T')— R_ Ln—l ﬁ € ) (DS)

andforj:l—%

r\'! 1\ o 1° iy (1 22
- 2 ()t ()

The label o« = (nljm;) characterizes the state with principle quantum number
n = 1,2,3, ..., orbital angular momentum [, total angular momentum j = [ + %
and projection m;. Due to the quadratic nature of the potential the radial wave

functions contain the associated Laguerre polynomials L% (z) with

Li() = S (=1 = ng@?!m)!m!xm. (D.11)

m=0

The angular dependence, Vo (Z) = Vyjm, (Z), is defined by

1
yljmj(j:) = Z <lml§ms

my,ms

where Y}, (Z) is the usual spherical harmonic.
The two coefficients R, and p, in the radial function of state a are of the

form

R, = R(1+ A&, pR)~'4, (D.13)

e = (%)3 (D.14)

and are related to the Gaussian parameter p, R of Eq. (2.6).
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The quantity A&, = £, — & is the excess of the energy of the quark state
a with respect to the ground state. A&, depends on the quantum number n and

[ and is related to the parameters p and R by

3p ? 1 P 2
A — A — )| = =An+2l-1). D.1
(36 ) (a4 1) = fmea v s

The normalization constant, which results in

B 2n + 21)! 1\1
Na — |92 2(n+1+1/2) 1/2R3 ( 1 2 9 ] — = D.16

is obtained from the normalization condition

/ﬁmMmM@_L (D.17)



Appendix E

The Wave Function of the Nucleon

In our calculations we work first on the quark level and finally project the
operators from the quark level on the nucleon level. In this Appendix we are going
to show the wave function for nucleon, proton and neutron, before we project our
calculation from the quark level on the baryon level.

The wave function of the nucleons are formed by using the SU(2) flavor
(u,d) combining it with the SU(2) spin (up, down) and the SU(3) color (r,g,b).

Therefore, the nucleon wave function are given by (Close, 1979)

IN) = % (X + Gupn Xonn) U (E1)

where ¢, x and v, refer to the flavor, spin and color wavefunctions, respectively,
while the subscript M,S and M, A stand for the mixed symmetric and mixed
antisymmetric wave functions, respectively. The explicit forms for the flavor part

are given by

(

10) = L (udu + duu — 2uud
proton e \/é( ) (E.2)
\ Pyn = \%(udu — duu)
6., = ——=(udd+ dud—2ddu
neutron e ‘%( ) (E.3)
L ¢M,A = \/Li(Udd - dud)
and for the spin up wave function we have
1
Xaus = T+ T=217]
spinup() { M T S | (E4)

XM,A = %(TlT - lTT)
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The explicit form of the color wavefunction is given by

1
1. = —=(rgb — rbg — grb + gbr — bgr + brg). (E.5)

V6
The factor 1/4/2 in Eq. (E.1) is the normalization constant from the con-

dition

(N|N) =1. (E-6)



Appendix F

Nucleon Mass

Before setting out to present the renormalization scheme of the PCQM
(Appendix G), we first define and discuss the quantities relevant for mass and
wave function renormalization. Following the Gell-Mann and Low theorem (Gell-
Man and Low, 1951) we define the mass shift of the nucleonic three-quark core,

Amy, due to the interaction with Goldstone meson as

n=1 """

where the strong interaction Lagrangian £V treated as a perturbation is defined
by

1

LY (@) = 370, (@) ()77 7 ) — T (@) Oy ()b @)y b (a). (F.2)

We evaluate Eq. (F.1) at one loop to order o(1/F?) using Wick’s theorem and
the appropriate propagators.

The total nucleon mass is given by m’y = m%*® + Amy. The superscript r
refers to the renormalization value of the nucleon mass at one loop. The diagrams
that contribute to the nucleon mass shift Amy at one loop are meson cloud (Fig.
F.1(a)) and meson exchange diagrams (Fig. F.1(b)). The explicit expression for

the nucleon mass with one loop correction can be written by
mhy = mS + Amy = 3(& + ym) + AmMC + AmL¥, (F.3)

where AmA© and Am%* are the contributions to nucleon mass shift by the meson

cloud and meson exchange diagrams, respectively.
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Figure F.1: Diagrams contributing to the nucleon mass: meson cloud diagram (a)

and meson exchange diagram (b).

F.1 Meson Cloud Contribution to the Nucleon Mass Shift

«
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-7 N 3 !
:W <¢0’b§)/d kw(k2)(w(k2) + A&,)

X {{/dgxlﬂo(xlﬁ . EVE‘Tmua(xl)eik'“] {/dgmﬂa(@ﬁ : E75Tmuo(l’2)e_ig@2]

—w(k?) [/d%lﬂo(ml)? : E75Tmua(x1)eik'f1] {/d%gﬂa(x2)70757'mu0(x2)e_iﬁ'f2}

—w(k?) [/d3a71u0(m1)7075Tmua(x1)eik'fl] {/dgxgua(xg)i . /275Tmu0(x2)e_ig'f2}

(k) { / deluo(ml)yov‘r’Tmua(xl)eiE'fl} { / d%wa(xg)7075%%@2)8_15@}}
xbol o) (F.4)

with the pion energy w(k?) = /M2 + k?; k = |k;| is the pion momentum and
A&, =&, — & is the excess of the energy of the quark in state o with respect to
the ground state.

It can be shown that (see Appendix J)

/ Briig(2)7 - K Tmtta(2)e®T = Fy (k) [(5 - z%)fm} " (F.5)
/ Paiia(2)7 - kY Tmuo(z)e FF = F (k) [Tm<5 /%)LO, (F.6)
/ Eato(w) ™ rta (@™ = P0G Bra] . ®D)
/ Bt (2)/ Y Tmio(@)eFF = Ff, (k) [Tm(a-z%)]avo. (F.8)

With the above expressions AmA¢|, can be written as

MC _—W N ! .
Amyla = g <¢0‘b/ w(k?)(w(k?) + Ala)
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with the identity of the Pauli matrices

3
m=1
and one can show that
Fip, (k)F} (k) = Fy, (k)F}, (k), (F.11)
then we get
AmMC| — _—37T N<gb0|bT [XTXT XT} /OO dk k2 1
N e 4F2(2m)4 0 [retfAs] 0 w(k?)(w(k?) + AE,)

x [Ffa(k)FL(k) — 20(k?) Fr, (k)Y (k) + @ (k) Fra, (k) FJ;, (k)

< [ 4001 (@ B Do olon) ™ (F.12)
However, some spin algebra gives that
/Q dQ (G - k) (G - k) = 4l (F.13)
and we also use the one body projection operator which gives the result
3
P TP =3 (F.14)
i=1
where I is the identity matrix. Then, the result of Am3¢|, yields
S A T s

x| B, (R (k) = 20(k2) Fy (R)Ff () + w2 () For, () Ffy, ()]
(F.15)

The expression in Eq. (F.15) is the mass shift of the nucleon due to the self-
energy correction of the meson cloud when the intermediate quark propagator is
in the state a. The full expressions for Fj_(k) and Fyy, (k) are shown explicitly in
Appendix J.

The label o« = (nl,jm) characterizes the quark state (principal quantum
number n, non-relativistic orbital angular momentum [, total angular momentum

and projection j,m).
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F.2 Meson Exchange Contribution to the Nucleon Mass

Shift

AmNE
= Mg _2—!1/15(t1)d4x1d4x2
xN{{iaume*‘frmw] {%dﬁrnm’”f’wﬂ} }\¢o>iv
O q§0|/5t1dx1da:2

8F2

X (1) Yy Tt (1) (2) " ’Y5Tn¢(172)(9H7Tm(x1)5’uﬂn(372)|¢0>iv
— ! N<q50\bT (21)b})(22) / d%ﬂ%ﬂ“kﬂ

8F™>(2m M2 — k% —ie

Xﬂo(xl)y“kiﬁ Tmuo(xl)ﬂo(:vg)vl’kl,y5rmuo(x2)/dtldt25(t1)e_ik0(t2_tl)

xbo(x1)bo($2)|¢0>N
1

— 8F2_( N<¢0‘bT xl)bO(xQ)/d3$1d3x2d3keik'(f2fl)

< dko{ i ) [ T R )
«|nnta
—1

(3% — 7 - E)Muo(xz)} }bo<x1>bo<x2>\¢o>N

N 3 1
- T = Mo b} ()} 2)/d sz(kz)

X [/d 1o (21)7 - k’y Tmuo(xl)eig'fl}

% |:/d3x2ﬂ0(x2)’7-E’}/5TmuO(.T2)eiI;'f2:| bo(xl)b0($2)|¢0>]v
-1 N T 3 1
R :””%(“)/ T
3 9 ~ 3 9 RS
X ggA kaNN(k ) k) Tm QA kaNN k”) [(U : k)Tm]OO
V]

xbo($1)50($2)|¢0>



76

— W?%)?, (4 )2 M olb) (1) [xcxfxs} Dj(a2) b

N
x [xsxsxelp,, bo(21) XstXc] bo(2)|¢o)

_ 100( ) N<¢0|bT (z1) [xcxfxs]ﬂ bl (x2) [xlx}xi}

T O(E2

2

JF ,
X /0 dlek =N w2(k2) ) (3., Grz) Tona, T,

N
X [XstXc]oz bo(%) [XstXc]oz bo(¢£2)|¢o>
©\? oo 2
9 ga / 4FNN(k>
= dk k" —T———=. F.1
10 (27TF> 0 w?(k?) (F.16)

In order to get the expression in Eq. (F.16) we have used the spin algebra

- L op 4
[ 005,15, = 5 -5 (F.17)
and the “two-body” operator results in
3 . .
(P11 (007m) @ (0aT) [P 1) = 30. (F.18)

i#]
The expression in Eq. (F.16) is the mass shift of the nucleon due to correction of

the meson exchange.



Appendix G

Renormalization of the PCQM

To redefine our perturbation series up to a given order in terms of renormal-
ized quantities a set of counterterms, 6L, has to be introduced in the Lagrangian.
Thereby, the counterterms play a dual role:

(i) to maintain the proper definition of physical parameters, such as nucleon
mass and, in particular, the nucleon charge

(ii) to effectively reduce the number of Feynman diagrams to be evaluated.

G.1 Renormalization of the Quark Field

First, we introduce the renormalized quark field ¢"(x) with renormalized

mass M, substituting the original field ¥ (z):

! (s m]) Zb up (Z;m; ) exp[—i&L (m]) +Zdﬁvg T;m;) expli€s(m;)t],

(G.1)

where “” is the SU(2) flavor index; & (m!) is the renormalized energy of the

quark field in the state a obtained from the solution of the Dirac equation
[—7"7 - V +4°m] +7°S(r) + V(1) = E5(mi)]uf, (5 m]) = 0. (G2)

Using the derivations of the previous Appendix, the renormalized mass m; of the

quark field is given by

m, =m} =1m" =1m—om :m+ A (G.3)
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the meson exchange contribution will be included when introducing nucleon mass
renormalization. Thereby, the full expression for renormalized quark mass is writ-

ten as:

. 3 1Y o, 1
o= m‘&(ﬁ) Z/ R ) @l + ALy

x [Ffa(k)FL(k) — 20(k®) Fy, (k) Efy, (k) + w0 (k) Fru, (k) Fy, (R)|

(G.4)

The summation on state a appears when we take into account the intermediate
excited quark state propagator. When restricting the quark propagator to the

ground state the expression above for the renormalized quark mass reduces to

O\ 2 poo 2 2
A A 27 9a / 4FNN(k)
T=m—- — == dk k* =22~ 2, G.5
Mo =1 4007<7TF) ; W2 (k2) (G.5)

For the quark masses we will use in the following the compact notation:
M" = diag{m",m"} and JIM = diag{dm,om}. (G.6)

The solutions of Eq. (G.2), £.(m") and ul,(Z;m"), are functions of m”". While,

the propagator of the renormalized quark field ¥"(x) is given by

Gy (2, 1) = (00| TL0 (@) (1)} 60) — 3wt (25 () expl—i€L (z0—y0))0 (0 10).

: (G.7)
Again, we restrict to the quark states propagating forward in time. Eq. (G.7)
differs from the unperturbed quark propagator iGy(z,y) by the term of order 7",
which in turn only contributes to the two-loop calculations. Thus, to the order of
accuracy we are working in (up to one-loop perturbation theory) it is sufficient to
use the unperturbed quark propagator iGy(z,y) instead of the renormalized one.
In this present work intermediate excited quark states are included in the loop
diagram but we do not have to use the renormalization wave function for excited

states, only the ground state is modified.
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For the renormalized ground state wave function ug(z; m") we again con-

sider the Gaussian ansatz

=, AT AT AT f2 1
ug(Z;m") = No(m") exp [—C(m )Q—RQ} .z Xs Xf Xe (G.8)
ip(m") R
with normalization
Brul (@ m™) ul(z;m’) = 1. G.9
0 0

In Eq. (G.8) the functions N(m"), ¢(m”) and p(m") are normalized at the point

m” = 0 as follows:
N(0) =N, c(0) =1, p(0) = p. (G.10)

The product p(m”) ¢(m”) can be shown to be m/-invariant and we therefore obtain

the additional condition
p(m") c(m”) = p. (G.11)

Treating " as a small perturbation, Eq. (G.2) can be solved perturbatively,

resulting in:

Em") =& + 0&(m”) (G.12)
and
ug(Z5m") = up(Z) + dup(x;m") (G.13)
where
& (Mm") = ym” (G.14)
and

W pR (545 i ;
dug(T;m”) = -5 P = (2 gp - =+ 70> uo(T). (G.15)
2
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For our set of model parameters the ground state quark energy &, is about 400

MeV and for the energy corrections &, relative to & we obtain

‘550(W) ~ 14.%. (G.16)

&o

Given the small corrections expressed in Eq. (G.16), the perturbative treatment

of a finite (renormalized) quark mass is a meaningful procedure.

G.2 Renormalized Effective Lagrangian

Having set up renormalized fields and masses for the quarks we are in the
position to rewrite the original Lagrangian. The renormalized effective Lagrangian

including the photon field A, is now written as
fan(®) = Ly(2) + La(x) + Lon(z) + LI (2). (G.17)

The renormalized quark Lagrangian L} (r) defines free nucleon dynamics at one-

loop with
Ly(x) = E%w(:v) + E@W)Q(x), (G.18)
Liy(a) = @) @ - M = S(r) =1 V()y'(x), (G.19)
Ligpe(x) = %@Wm(af)tﬁ"(ﬂﬁ)v“v%ml/}’"(fv) : (G.20)

The parameters M of Eq. (G.6) guarantee the proper nucleon mass renormal-
ization due to the meson cloud diagrams of Fig. F.1(a). The terms contained in
E’@ e (x) are introduced for the purpose of nucleon mass renormalization due to
the meson exchange diagram of Fig. F.1(b).

The free meson Lagrangian Lg is written as

£, = —7(2)(0 + MY(x). (G.21)
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For the photon field A, we have the usual kinetic term

[,ph:—iFW(x)F“”(x) with  Fo(2) = 8,A,(x) — 9uAu(2).  (G.22)

The renormalized interaction Lagrangian L}V, (z) = E}/Y;Str(m) + E‘I/V;,em(x)

contains a part due to the strong interaction,

LY (x) = L7 () + 6£7 (x) (G.23)
and a piece due to the electromagnetic interaction,

LY @) = L7 (z) + 0L ™ (). (G.24)

The strong interaction term £*" is given by

1

L}’V;str(x) _ ﬁauﬁ(x)iﬁ(x)v“fﬂbr(@ — %m(x)aﬁﬂj(x)@ﬁ_r(x)v“ml/ﬂ(m).
(G.25)

The interaction of pions and quarks with the electromagnetic field is described by

(Lyubovitskij, Gutsche, Faessler and Vinh-Mau, 2001, 2002)

L7 M(@) = —eAR™ (2)Qy"Y (2)
€ em 7 = — - r
L AT @) () [P (@) — 7 (@)7r(@)] (@)
() -
—eAzm(fL‘)ESij Wi(fﬁ)auﬂj(aj)—%@/JT(ZL‘)’}/M”}/SQMT(:L‘) ,(G.26)
which is generated by minimal substitution with

O" — D" = 9" +1eQAYT, (G.27)
a,u,ﬂ-i — D/Lﬂ-i = a,uﬂ-i + €€3ijAZm7Tj, <G28)

where @ is the quark charge matrix with @ = diag{2/3,—1/3}. The set of

counterterms, denoted by §LV:s¥ (x) and 6LV (x), is explicitly given by

SLY M (2) = §LY 5 (@) + 0Ly (2) + 6L (x), (G-29)
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with
0Ly (z) = (@) (Z—-1)[ @— M —S(r) ="V (z), (G.30)
SLY N (2) = — " () SIMYT(x), (G.31)
SEY @) = | S (o) (G.32)

and
5LV (x) = —eAu ()Y (x) (Z — 1) Qy" (), (G.33)

Here, Z = diag{Z, Z} is the diagonal matrix of renormalization constants for u
and d quarks. The value of Z is determined by the charge conservation condition.
The simplest way to fix Z is on the quark level. The same set of values for Z is
also obtained when requiring charge conservation on the baryon level. Results for
Z will be discussed below.

Now we briefly explain the role of each counterterm and why the constant
Z is identical in 6£]*" and 6£":™. The counterterm §£":°™ is introduced to

W st s
L7 containing the same

guarantee charge conservation. The counterterm ¢
renormalization constants Z as in 6™ is added to fulfil electromagnetic local
gauge invariance on the Lagrangian level. The same term also leads to conserva-
tion of the vector current (baryon number conservation). Alternatively, §£%W:em

£ by minimal substitution. In covariant theories

can also be deduced from ¢
the equality of the renormalization constants in 6£; " *" and §£":*™ is known as
the Ward identity. The counterterms 6£3 %" and 6L}y "™ compensate the con-
tributions of the meson cloud (Fig. F.1(a)) and meson exchange diagrams (Fig.

F.1(b)) to the nucleon mass m’ (The contribution of meson cloud and exchange

diagrams is already taken into account in the renormalized quark Lagrangian Efp)
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G.3 Renormalization of the Nucleon Mass

Now we illustrate the explicit role of the counterterms when performing the
calculation of the nucleon mass. The renormalized nucleon mass mf, is defined
by the expectation value of the Hamiltonian H, (as derived from the Lagrangian

L) averaged over state |o) and projected on the respective nucleon states:

mhy = Mol / 5(t) d*z My (x) [po)™, (G.34)

By inclusion of the counterterms the strong interaction Lagrangian ,CII/‘,/;S” should
give a zero contribution to the shift of the renormalized nucleon mass at one loop,

that is
2 n
Amly = N<¢0|Zg / i6(t)d wy ... d e, TILE 5 (1) . L ()] | do) Y
n=1
i ; Str ; Str
= Mo — 3 /5(t1)d4$1d4I2T[£?/’ (a1 LY (2)] o) Y

Mol [ dte)ata Y 5L (o) o)
0. - (G.35)

To prove Eq. (G.35), we first note that the contribution of the counterterm

5L} is equal to zero due to the equation of motion (G.2), that is
Yool [ 5025l @) o) = 0. (G50

The counterterms 523 *" and 6L} ™" compensate the contribution of the meson

cloud (Fig. F.1(a)) and exchange diagrams (Fig. F.1(b)), respectively, with

[ sttt )£} )

Mool -~ 5

Mol [ Se)atalsey () + 65 (@)on) = 0.(G.37

hence Eq. (G.35) is fulfilled. The calculation of the nucleon mass mf, at one-loop

can then either be done with the “unrenormalized” Lagrangian L. or with the
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“renormalized” version Lf,; (G.17). Both results for mf}, are identical and are
given by Eq. (F.3).
G.4 Renormalization of Nucleon Charge

Now we consider the nucleon charge and prove that the properly introduced
counterterms guarantee charge conservation. Using Noether’s theorem we first

derive from the renormalized Lagrangian the electromagnetic current operator:
I8 = G 38+ Garr + e (G.38)

It contains the quark component (jj,), the charged pion component (j&), the

quark-pion component ( jgw) and the contribution of the counterterm (6 jgr):

T = QYT = % (2u"y"u" — d'yHd") (G.39)
i = esymidim = widtTt —atiotn, (G.40)
Jorn = —ﬁ Pt (7P — 7 7)Y — ey ;élETW“VBTiQ/JTa (G.41)
Oty = (2 —1)yQuT = %(2 — 1) (2u"y"u" — d' ) (G.42)

where () is the quark charge matrix.

The renormalized nucleon charge ()’ at one loop is defined as

2 .,
r 1 ;str ;str . N
Qy = N<¢0| Z | /5(t)d4a:d4x1 . d4an[£% "(xy). .. £% ¢ (xn)jf(a:)]|¢0>c )
n=0
(G.43)
Charge conservation requires that the nucleon charge is not changed after renor-

malization, that is

1 for N = p (proton),
Qn =Qn = (G.44)

0 for N =n (neutron).
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Thereby, Q) is the nucleon charge in the three-quark core approximation, which
is defined as the expectation value of the quark charge operator Qy = [ APz (x)

taken between the unperturbed 3q-states |¢g):

¢0‘/ d'z gy (x)|po) ™. (G.45)

Eqgs.(G.43)-(G.45) completely define the charge conservation condition within our
approach.

From nucleon charge conservation we obtain a condition on the renormal-
ization constant Z. In the one-loop approximation following diagrams contribute
to the nucleon charge : the three-quark diagram (Fig. (G.1)) with an insertion of
the quark current jy,, the three-quark diagram (Fig. (G.2)) with the counterterm
0jyr (three-quark counterterm diagram), the self-energy (Figs. (G.3) and (G.4)),
the vertex correction diagram (Fig. (G.8)) with the quark current jy;., and finally

the meson-cloud diagram (Fig. (G.9)) generated by the pion current j~.

™

G.4.1 Quark Current Component

Figure G.1: Three-quark core diagram

The contribution of the three-quark diagram Fig. (G.1), with an insertion

of the quark current jg” to the nucleon charge is trivially given by

s _ ¢0|/5 a0 (2)|60)Y = Q. (G.46)
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G.4.2 Counterterm Current Component

Z -1

Figure G.2: Three-quark core counterterm diagram

The three-quark counterterm diagram Fig. (G.2), with the counterterm

5j$r, is simply related to the one of Fig. (G.1) with

%CT _ (Z_1>Qr;3q

= (2= )Nl [ 50l wlen))

~

= (Z-1)Qu. (G.A47)

G.4.3 Pion Current Component

,§\
.
(L

’
o
.’

\
[y

.
1
1

T

Figure G.3: Pion loop I diagram

The pion loop diagram Fig. (G.3), with the pion current j# results in
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r;Loopl
N

= Mool [ Sle)atadtn I} o)) n)
— 2N<¢0|1/5(t)d4md4x11\7{[ 4};’;7lr28 LTy Tle [gz”lm?aat‘ ] }cho)iv

__ewtum / S(t)d wd ()Y it ()

4F?
x@l(:ﬁ)a wj(xl)gt ()] 00),

2 1. . _
= 4;;%53) N<¢0‘bT/d3xd3x1d4kld4k2k3uo(xl),yﬂkQMTkuo(wl)

elk1 (Z—71) eiEZ'(iﬁff) - - )
dtdt: (1) e ki (t=t1) g =iky(ti—t)p)
M2_l~{/‘2—i€ Mg—kg_le / 1 ()e e 0|¢0>

-

_ j;féyk&m N<¢0\bT/d3xd3x1d3k1d3k elkl (T=Z1) k2 (£1-7)

1
« / A0 L S I Y¥ B
M2 — (K9)2 4+ k2 —ie| | M2 — (k)? + k3 — i€

™

X {(k‘o)Q [t (1) g (21)] — K9 [ﬂo(mlﬁ : ];277@“0(551)} } bo|¢o>N

2i€;:1.E3; - e
= 4F2jk 3ij N<gb0\bT/d3x1d3k1 [Uo($1)707'kuo($1)]€ ka1

81 oif2 1 | _ i / a3 —if.(/ZQ—El)b N
/dze W) +wm)] ) olger

€ijkE3i _
— k=3 N<¢0\bT/d3k1 [/ deluo(xl)’yoTkuo(xl)} b0]¢o>N

1
4F?(2 2w(k?)
1

1
T 4F2(27)3 N o} [XIX}XZ}O/dSkw(kz)Tg [XsXFXelo bo|¢0>N. (G.48)

G.4.4 Quark-Pion Current Component

The contribution of the nucleon charge from the quark-pion current jZ”r’

Jhoen = Jh 4 Gl 4 s (G.49)



88

where

jf;ilﬂ = 4F2wr7 21", (G.50)

" 1 - r

]Z;i = 1= PR - 7m0 (G.51)

J = ek (G.52)
can be shown separately.

Figure G.4: Pion loop II diagram

Pion Loop II;1

The charge contribution to the nucleon with the insertion of jZilw yields

r;LooplI;1
N

_ ¢0]/ d'zj! (2)]|60),
_ g / o |- g )i )]

]' N
= m <</50|b /d T (7w )’707'3U0(.’13)/d3kdk0M7% BT o 1eb0|¢0>
3 1
= 4F2(7T 7 (o0} [xcxfxs} / d%mfg XXl boldo). (G53)

Pion Loop II;2

The charge contribution to the nucleon with the insertion of jgﬁr results in
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r;Loopl I;2
N

= Mool [ 8002 @)
= Mol [ 00 | dentm@manoe)| o)

1
= i (olb / d*ztig(2)7 T3u0(2) / Pldk,

N
4F?(27)4 boldo)

Mﬁ—k3+l_€)2—ie

1
- 4F27(T N<¢O|bJr [XchXs] /dgkw(k:Q)TS [XstXc]Obo|¢o>N. (G.54)

For the pion loop correction to the nucleon charge, we obtain

r;Loop T LoopI r;LooplI;1 r;LooplI;2
N = + QN + QN

2m 37T+7TN t ottt 5, 1 N
- 4F2(2 <¢O|b [XCXsz]O d k:CU(k2)T3 [XSXfXC]ObO|¢0>C

= 0. (G.55)

Thereby, the contribution from the pion loop to the nucleon charge vanishes for
the one loop correction.
The nucleon charge with the insertion of jgf;r are the self-energy I, IT and the

exchange term. The analytical expressions for each diagram are shown separately.

Figure G.5: Self energy I diagram
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We have used the Pauli matrices algebra
637;jTjTZ' = —2i7'3.

After the projection on the nucleon we obtain

3
" = (pT) (m)pT)= 1,
=1

3
P = (1) (m)in 1) =-1.
i=1

. N
’ N
’ N
’ N
’ a \

Self-Energy 11

Figure G.6: Self energy II diagram
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(k) Fu, (K Ey, () = Fy, () Ff ().

(G.56)
(G.57)

(G.58)

(G.59)

o
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Here we also obtain

3
B = 11 (1) = 1, (G.61)
=1

%" = (n 1> (m)nt)=-1 (G.62)
=1

Exchange

Figure G.7: Exchange diagram
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Because of this condition:

B!
1
I
]

/ d*xtig(2)Yy Tiug (z)e 7 (G.64)

G.4.5 Vertex Correction

The insertion of the quark current jgr with two vertices of the pion-quark

interaction results for the nucleon charge in

r2 8 < a 11
® bt

Figure G.8: Vertex correction diagram
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Here we use

/ Prtig (2)7°Qup(x) = JapQap

= Jap [xlx}xl} Q [xsxfxc] 5 (G.66)
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We obtain
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0,
RN °° 1
S — b IxiixT 7 / dk k?
8F2(27T)3 <¢0| 0 |:XchX5:|OT’LQTZ 0 w<k2)(w(k2)+Aga)2

< [m(@zﬂl(m () Fy, (W) F, (k) + w2<k2>Fua<k>FLa<k>}

8 / dQUF - k)@ - k) [xsxrxelo boldo)
Q

- QJ‘\// Oo 2 1
N 4(27TF)2/0 dik w(k?)(w(k?) + AE,)?
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(G.67)
When projecting on the nucleon, we obtain
3
g, ¢ = ZPTIZT]QT; p1)=1 (G.68)
N
0 = ZnHer@n nt)=2 (G.69)
Jj=1

G.4.6 Meson cloud

The insertion of the pion current j# with two vertices of the pion-quark

interaction gives
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Figure G.9: Meson cloud diagram
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rMC - N > 2 1
NS 4F2 5 Yool ] s /0 ) (i) + AEL)

X {WW) [w(kZ) + 2A5a] Fip, (k) F}, (k) — 208, Fy, (k) Ff, (k)

—Fy. (k) F}. (k) }/ﬂ A5 - k)(F - k) [xaxpxely boldo) ™

_ 4y 2 1
N 2(27TF)2/0 dk k w(k?)(w(k?) + AE,)?

X {w(k2) [ (k) + 2AE ]FHQ( VE), (k) — 2AEFr, (k) F, (k)

—Fy, (k)Ff (k) } (G.70)

Projecting on the nucleon, we obtain

3

o' = @11 _=1)= 1, (@.71)
=1
3

' = (1> nt)y=-1 (G.72)
=1

We also obtain a set of diagrams Figs. G.10(c), G.10(d), G.10(g) and
G.10(h) generated by the counterterms 6£5 ™" (z) and 6Ly " (z). The con-
tribution of the counterterm 5L} (z) is equal to zero due to the equation
of motion (Eq. (G.2)). By the definition of the counterterms d£5 *"(z) and
SLY ™ (z), the self-energy and the meson exchange current diagrams of Figs.
G.10(a), G.10(b), G.10(e) and G.10(f) are compensated by the counterterm dia-
grams of Figs. G.10(c), G.10(d), G.10(g) and G.10(h), respectively.

To guarantee charge conservation, the sum of three-quark, meson cloud,
vertex correction, self-energy I and II, and the counterterm diagram have to equal

the nucleon charge of the nucleon before renormalization:

Qv = QV+QVT+ QN + Q7 + QX7 + QY
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(c) (d)
¢ ¢
. .
(e) (f)
SLy s SLy s
(g) (h)

Figure G.10: Diagrams contributing to nucleon charge where their sum equals
zero: self-energy diagram (a) and (b), self-energy counterterm diagrams (c) and
(d), exchange current diagrams (e) and (f), and exchange current counterterm

diagrams (g) and (h).
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From the previous calculation we obtain:

| * 1
. 71 — [ dkk?
QN Qn + ( )QN + 4(27TF>2 /0 w(kz) |:(.U(k2> + Aé’ar

x{ X+ 2| P, () F (12)
19 [2 AE, [q%c — q}fﬂ — w(k?) [2 aN’ + q}GCH Fr (K*)F}; (k)

+ [4 A&w(k?) [qJSVE - q%c] + w?(k?) [4 o’ — 28 + qXCH

XF][a(kQ)FIT[a (k,?)} (G73)
Here we use
3BT = (SEIL = (B, (G.74)

Then, for the neutron charge renormalization results in
Q=0 (G.75)

as we expected since after renormalization the neutron charge should not be
changed.

For the proton, the renormalization charge is calculated by

g 3 OO 2 1
1 = 14+1(Z —1)+W;/0 di w(k?)(w(k?) + A&,y)?

X | Fr, (k) F} (k) = 20(k?) Fr, (k) Ffy, (k) + W (k%) Frr, (k) Ffp, (F) |

(G.76)

and the full renormalization constant, Z¥, is

>F 3 OO 2 1
R D /0 R ) () + AE,)?
X [Fla(k)FL(/f) — 20(K?) Fy, (k) Fy, (k) + 0 (k) Frr, (k) L (F) |

(G.77)
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The summation over state o appears when we take into account the intermediate
excited quark state propagator. When restricting intermediate quark states to
the ground state Eq. (G.77) yields the result

2
; 27 (g9 \ " [ 4 F2yn(K?)
70 -1 2 [ZA dk gt =N T .

400 <7TF /0 w3(k?) (G.78)



Appendix H

Axial Vector Current

In QCD, the axial vector current is given by the operator Af = ¢y#y

57i

2

The corresponding representation in the framework of the effective theory may
be obtained from the effective Lagrangian - it is given by a term linear in the
external field af(z). The representation of the axial vector current in terms of

effective field consists of an infinite string of terms
Al = AR 4 A L o). (H.1)

According to section A.5, the effective Lagrangian involves the quantities u,, D,

and 4. In the absence of the external fields v,, p and s, these reduce to

u, = i{uT,auu} — [uT, [u,aﬂﬂ + 2a,, (H.2)
1 1

D, = 0,+ 3 [ul, 0,u] + 5 {u,[u,a,]}, (H.3)

i = MAUT+D), (H.4)

while the chiral field is U = e!®/7,
In the following we restrict to the SU(2) flavor case, that is, only pions are

considered. The effective Lagrangian reads

Log =LY+ L2, (H.5)

(. _ 1
Et(zl) = ¢{1’7“8“ — ’}/OV(T) — S(T‘) — M}w + 77/1{ - mﬁzjkﬂﬁuﬁﬂuﬂg
1

~5F (mnmﬁuﬂk — ﬁ%aﬂi) 7“75}¢ + O(74),

1
5
LYy T+ o3

(H.6)
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1 1 1
Ef) = 5@7?10’“”% -5 727?2 + 6F2 {m(@um)ﬂk(a’”ﬂk) — 7?2(8#7@)(8“7&)}
+517 M27t 4 O(n®). (H.7)

The relevant contributions to the effective field theory representation of the oper-
ator A! read:

A?:A?(O)—}—Ag(l)’ (H8)

where

©) - Ti  Eijk 1 T

(H.9)

1 2
Aé‘( - Fotm, + Va (mim;0tm; — B20Mm;) + O(n?). (H.10)

One can show that, using Eqs. (H.5) and (H.8) with the Euler Lagrange

equation which states that

oL oL
%~ (o) O -

the divergence of axial vector current up to the order we are interested in,

O(1/F? ), results in
0, A = —FM?m;. (H.12)

Eq. (H.12) is well known as the partially conserved axial vector current, which
states that the divergence of axial vector current is proportional to the mass of
the pion squared. In the chiral limit, M, — 0, the conservation of the axial vector
current is regained.

In Eq.(3.1), the axial vector current has the term linear in F, that is F'O" ;.
To obtain the PCAC in the order we are interested in O(7,1/F?) we have to
expand the effective Lagrangian up to 1/F3.

The counterterm axial vector current part in Eq. (3.1), &T(ZA — 1)7"75%wr,

results from the renormalization techniques of the PCQM.



Appendix I

Calculation of the Diagrams for

the Axial Form Factor

I.1 Three-Quark Core

8

Figure 1.1: Three-quark core diagram

7'3
Xh, o B xm Ga(@Y)],,

= Noul [ s0dtwe I @y R @)

= Mool [ s(0)d s a w)y Fuiatolon)”

= Mot / 5(t)d ze 19 () + 1o (z; "))
><7375% (o) + dug (; 170")] bol o)™

. T T .
= N<¢0|b$/5(t)d4xe_‘qx{ﬁo(x)y?’fguo(a:) +ﬂo(x)7375§36u0(9@;m )

+dtg(z; mr)v?’y‘r’%uo(x) +O((m")?) }b0|¢0>N. (I.1)

Here we separated the contribution of the three-quark core diagram, into the three-

quark core leading-order(LO) term and the three quark core next-to-leading order
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(NLO) terms, that is,

Ga(@)],, = Gal@)];, + Gal@)];, (1.2)
with
Ga(@%) §qo = 2 N<¢0|b(T)/5(t)d4$€_iqzuo($)7375%Uo(x)bo|¢0>Na (L3)
Ga(@)]5" = 2 Naolt] / S(t)d*we g (2)7 P P rydug(ws i), (L4)
where
sl i) = 5 (115 - T o) (15)

is the additional term of the quark wave function resulting from renormalization.

The factor 2 in the right hand side of Egs. (I.3) and (I1.4) come from the calculation
3

of X}r\, o3 %N xn~, on the nucleon level. For a proton with spin up we get

3
3T 1

X;TS/J 2 Xpts = 5 (16)

I.1.1 Three-Quark Core Leading Order (LO)

Now we come to consider the expression of the three quark leading order

term
Ga(@)y, = Maolbi(2) / S(t)d we™ g ()7 >y g ()bo ()| do)

— Mgy lb}(x) / BT ()7 o ()bo ()] o)

2 — p? N
= <2 n 3;02) Fonn(Q7) N<¢0|b$(x)XZX}XlU37'3 XsXrXebo(2)] o)

5/(2—p?

= (m> Fonn(@®). (L7)

Details of the integration are indicated in Appendix K and the “one-body” pro-

jection operator yields

(PTIY (osm) P 1) = 2. 13)
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) is related

At zero momentum transfer, Q* = 0 the leading order axial charge g,
to the pion nucleon form factor, Fyyy, which is normalized to one. Then we

obtain

o _5(2-p"\_ o
G A(0) 39 — 3 (m) =9, (1.9)

and Eq. (1.7) can therefore be written as

Ga(@)]5y = 9 Frnn(Q?). (L.10)

I.1.2 Three-Quark Core Next to Leading Order (NLO)

For the next to leading order term we obtain

Ga(@?)

NLO
3q

= 2 N<¢0]b$/(5(t)d4xeiqxﬂo(x)fyS”yE’Tg,(Suo(x;mr)bo\¢0>N.

m"  pR 1+21p2 x?
= ¢0]b0/5 4ol T( ) 0373 [— '03 5 ( 4 ﬁ—i—’yO)]

2 1+ 3p2 \ 1432
Xug(x )bO‘Gﬁo
3 R 9 Lo
= §m p—z{ (1 + 5,02) Ga(Q?)
(1 + 2p ) 3q

_% [12 (2 —3p%) — 4 (1+5p%) Q*R? + pZQ“R“} exp <—Q24R2> } (L11)

I[.2 Three-Quark Core Counterterm
X, 0% B X%, G (@) o

= N<¢0\/5 tpeTie7( )( — 1)y (z)y? 5B¢r(x)‘¢o>iv

= (20 =) Xaulh [ B0t re T a ey Bl

= (20— 1)Ga(QY)], - (1.12)

cT

Ga(Q?)
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8

Figure 1.2: Three-quark core counterterm diagram

1.3 Exchange Term

Figure I.3: Exchange diagram
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Where
_ (k+ V)R L\
D<k>Q2) = ¢Xp <_ 4 k2Q2R4
x [2 + kv/Q2R? + exp (k\/@ﬁﬁ) ( 2+ k\/_RQ)} (L.14)
k2= k4 Q%+ 2k Q% (1.15)
We have used
3
(P11 esiesmnlomm)Poam] V1P 1) = 8. (1.16)
k+#£l
I.4 Self-Energy Term 1
g a »
x 1

Figure [.4: Self energy I diagram

3
X}rVS/J?VTTNXNsGA(QQ)’;E;I

= N<¢0|i/6(t)d4xd4xleiqx

1 _ .
xN { {ﬁawmwv“’ﬁmw} {— ?—;QI/J’YSTMTJ‘L}W@?

l | d

4F?
B ) ot ()0 T ()0, 1)y () )

_ —1E3;5 N<¢0|/6(t)d4xd4xle—iq$
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-

ik (2 —7)

ie 07
= #N<¢O|bg<x1)/d3$d3x1d4km

AF2(27)

X g (xl)’y“k“’yE’Tjua (xl)ﬂa(:c)fy:snuo (x)e

—

iq-7
% / dtdtla(t)efiqoteié‘oh efiga(tlft)@(tl _ t)e*igotefiko(tlft) b(] (3:) |¢O>N

€3ij o
- WN<¢O|Z)$<I1)/d3$d3x1d3k‘ek( 1 )eq

[ it [ L
M2 — kg + k2 —ic
x [uo@cm% 3. /5)75%'%(rvl)ua(:v)ngin(fv)] bol2)] o)™

. Egij’/Ti N + . 3 1
T 4F?(2n)t (dolbo 1)/d kw(kz)(w(k2)+ASa)

1

-

x{w<k2) [ / d3$1ﬂ0(1’1)’yofy‘r’Tjua(xl)eik'il} [ / At (@) Tt () ei<*-’9>'f]

— [/ d>xytig(11)7 - E”ySTjua(xl)eiE’ﬁ} [/ dPxtio (@) Tu0 (2) ei(qﬁg).f] }
xbo()|d0)"
Egij’/Ti 1

_ N, T T 3
T 4F?(2n)t (dolbo 1)/d kw(kQ)(w(k2)+A£a)

x{w(kz) [Fna(k) [(5.];)@} } {/ &> wiio ()’ Tiuo () ei(d‘—E)-f}

0,

B |:F1a(k) [(5 . ]%)Tj:|0,a:| {/ d*wiig (z)y Tio () ei(iﬁ)-f} }

) —oe P (|7 K]
d3 o 3 3 i(a—k)- el = mnkm n'i
/ T ()Y Tiuo(x) € ‘CT— k‘ [53 g T]a,o
Fr,(|7— ED :
e (V@ = ks )]

we obtain
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,7_3
X, 0% B xn, Ga(@) 5,

u)(kQ)F][a(k) — F] (lﬂ)

[}

L EsyT iotoil [ a2
4F2(27r)4 <¢0|bo($1)[XchXs}o/O dk k w(k‘?)(w(k?)—i—ASa)

o il bt

\/kQFian(j—QQki;&i)cose [ " k)TJ} “ [((\/@ it 153mn0mkn) Tl} o‘}

[XstXc} bo(x)] o)

«

1 > oWk Fi, (k) — Fi, (k)
- (47TF )2 <¢0|bT (21) |:XchXsi| 0373 /0 dk k () (@ (R) + AE,)
x/_tdw{ik(l_\/)k_flna(k) FI\V;— [\/_x+k(1—2x)]}

< [rexsxe] pota)lon)”
- 3(mr) [ o Sy

)
x/lldm{ u 3?/)_11@() FI\V;_ [\/_x—kk(l—%)]}

Finally we obtain

GA(Q2 ‘SE-I

. <47TF) Z/ ak 2 20) FH&(;?HJZEU;)

RO ) ) -]}

(L17)

When we restrict the quark propagator to only the ground state and use these

results

3
Fr(k) = ggg))anNN(W), (I.18)

Fi(k) = 0, (1.19)
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2ik_R k2 R?
Frip(k-) = Ti’)pfeXp (— 1 ), (1.20)

Fry (k=) = 0, (L.21)

then Eq. (I.17) reduces to

Ga(Q)]ps
_ éqig]; (;F)z/o dk;k#%kg;)/l dz (1 — 2) exp (_k34R2)
_ 82‘(]%(;)’;];2 (2;F>2/0 dk i ”N{;g)> (k, Q). (1.22)
I.5 Self-Energy Term 11
d/ a
e @

Figure 1.5: Self energy II diagram

3
XNS/O?VTTNXNSGA<Q2) ‘Z’E;II

= N<¢0\1/ d4:r;d4:c ela®

XN{{ Z&ijv W]}{ awmwww} }\¢o>iv
[Lel2F ) o1

_ —1E3;5 N<Q50|/(5(t)d4xd4l‘16_iqz

AF?
<P (2) YT ()9 (207 Tt (21 ) (2) Dyt (1) 0 )

[

-

ik (2—71)
k2 —

N
ig-x

1532
= 414_’2—]]\’<gz50|bT /d?’xd3m1d4kM2

X g ()7 Tiua(m)ua(xl)yukﬂy%juo(xl) e

% /dtdt15(t)eiqoteigoteifa(th)@(t _ tl)efi&)hefiko(tfh)bo(xl)’¢O>N
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- %Nwﬂybg(x)/d?’a:d3g:1d3kei’5-(f—fl)eiqﬁf
T

/dko ! =
M2 — k3 + k2 —ie

Y [ﬂo($)73Tiua($)ﬂa($1)(7°ko _3. Ew%uow} bo(ie1)] o)
—€3ij7Ti 1

— WN<¢0V?(T)($)/dgkw(/g2)(w(k2)+A8a)

1

x{w(k2) {/ it (1) i1 () ei(q*+E)-f} {/ d3x1ua(x1)70757jU0($1)eik'51}

| [ drrtert o) o5 | [ @i B nue)et) }
xbo(1)]é0)"

—€3ij7Ti 1

— WW%U)E(%)/dgkw(k2)(w(k2)+A8a)

x{ { / B riig()VP g () ei@*’a'f} w(k?) [F}fa(k) [Tj(ﬁ : l%ﬂaJ

_ { / dPaiio(z)y Tiua(z) ei(ﬂ]z)'f} {F 1 (k) [Tj (6']%)] a,o} }
xbo (1)l o)

Using the result in Eq. (K.11)

/d?’xuo(x)vgnua(x) lTTRT [€3mn0mk’nﬂ']

0,

Frv (|7 +K]) [((\/@ + k)T + iegmnkman)n] :

0,

we obtain
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73
XJ][VS/ O-?VTNXNSGA(QQ) |§E;[[

= MN T [T f T] /oo o W
4F?(2m <¢0’b XeXpXs], 0 dk k w(k?)(w

(
/dQ{ Fy, (k,Q?, cosb) [83mn0mk‘nTiL

\/k2+Q2—|—2k\/_0050 @
_ Fry,(k, Q% cost) 3 4k ieomdnon) 7] (5 0
\/k2+Q2+2k\/@cos9[<(\/Q_+k)I+g )] [5¢ k)]o‘}
X [XstXc] Obo($1)|¢o>N
N < ywk)F] (k) —F} (k)
= (47T1F)2 <¢o|b$($1)[X1X}X£] J373/0 dk k () (w (k;)+A5)
X/ldx{ik;(l—x)Fv (k. \/L\/_xjtk Fv., m}
X [XSXfxc]Obo<x>!¢o>N
50 1\ = wk)E (k) = Ff (k)
- §<4W_F)/ W i) w0 + A%,
x/ d:z{lk (1—2a?) FVJ@)\;L\/@fL"Fk)FIVQ(@)}'
-1 k‘i

Finally we obtain

, 10/ 1 \? , W k2 Ffm(/f)—FT (k)
Ca(@gprr = g(m) Z/ R = ) w() T AL

1d{ 1—1’ FVQ k+ \/ .T—f—kF[Va /{Z+)}
X
\/k-l—

X

1

(1.23)

When we restrict the quark propagator to only the ground state and use these

results

2ik, R k2 R?
FIIIO(k+) = #EEXP (— +4 >, (124)

Frv(ky) =0, (1.25)

the result in Eq. (I.23) reduces to
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Gs
GA(QQ) SEII

(0) 2 poo 1 2 P2
ga PR 1 / 4 Frenn (k) / 2 kiR
= dk k* ————= dz (1 — —
2+ 3p° <27TF) 0 G2k v (1-af) e | -

(0) 2 oo
ga pR 1 / 4 Fﬂ'NN(k> 2
dk k* ———=—=D(k . 1.26
82+3p2 (27TF> 0 w?(k?) (k. @) (1:26)

1.6 Vertex Correction

,
/
8
\
\

Figure 1.6: Vertex correction diagram

7—3 ﬂ:a
Xy, o XN, Ga(QY)] Ve
-1
= 2N<¢0|7/5(t)d4$d4$1d4$2

1 - 1 - - T: N
. ) HAD _ ) Va5 3.5'3
N { {2F @;ﬂlm/w gl Tﬂ B {21? GVT]@IM g w] B {@‘M 7S ﬂx} |d0).

= 8_—}1}2N<¢0|/5(t)d4xd4x1d4x2

><15(331)’7”757'i¢(%)1;(33)73’757'3¢(35)1;(352)7”7573‘1/1(552)@ﬂh‘(ﬂﬁ)&ﬂ@'(@) |¢0>iv

[ [

1
= —8F2<27T)4 N<¢o\bg/d3xd3x1d3x2d4kﬂo(x1)”y“ku’y‘r’nua(xl)

eiE.(fr@)

X T (2)7> 7 T3 uﬂ(:E)ﬂ/g(xghykyf)ﬁuo(@)—MT% TR

X / dtdtldtQ {6(t)e—iq0tei<€0t1 e—isa(tl —t)e—iag (t—tg)e—i(iotge—iko (tl —t2)

xO(t; —t)O(t — tz)}bo|¢o>N
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_8F2_—1 N<§b()|b]L /d3$d3xld3x2d3keiﬁ.(fl_fQ)ei@f

1 1
|:]€0 + Aga — 177:| |:]€0 + Agﬁ — 177:|

1
X/dk(] =
M2 — kg + k% —

x (1) (1 ko — 7 - )7 Titta (1)l (2)7°7 T s (x)

X tig(2) (Y ko — 7 - E)75Tiuo(x2)bo|¢o>N
1

S S PNt o
“16F2(2n)? <¢°'b°/ TR G0 1 AE) () 1 AE)

X {{/ d>wytig(21)7 - E’75Tiua<«r1)eig'f{|raﬁ|:/ d*xatig(2)7 - ];’75Tiu()(x2)eik‘.fz}

- w(k2){/ d’xytio(21)7 - Ev"’nua(:cl)eimﬂraﬂ{/ d*watip(w2)7"y Tiuo (w2 )e }

—w(kZ){/ d3:1:1u0(xl)VOVSTiua(ml)eig'fl}Faﬁ{/ dgxgﬂg(xg) kw Tiug(z2)e }
wQ(k2){/ d3x1u0(xl)WOVSTiua(xl)eiE'fl]I‘aﬁ[/d m2u5(:p2)7 Yoo (x2)e }

x bolgo)" . (1.27)

Here we have used

/ P xite(2)7° 7 3 ug(x)el7? [chfxs} F(Q2>[X3Xch]ﬂ =T (128)

then

T3 B
X}LVS/ a?\/ TNXNS GA(Q2> Ve

. 1
“Toranyp (olhy / (2 (@) + AEL) (k) + AEY)

5 {Fla(k)p;fg(k) [(5 - l%)n} o Lap [Ti(& . l%)}m
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I |
= TEE (b / () (0 () + AE) @ () + AEY)

x{ﬂxmﬂgm—w%%EJMFa@»—w@%EhwﬁL%>

+w2(k:2)FHa(lc)FITIB(k)} (G- F)m]  Tas |7(@-B) Lo tolen)”

1 . 1
~ 16F2(2 3 (Golp {chfXS] / ) k) + A& @) + ALy

x {Ffa(/f)FL(k) — w(k?) Fr, (k) Efy, (k) — w(k*) Frz, (k) F, (k)

uﬂﬁwmwwg%ﬁU&meMMMLmﬂﬁwdﬁhw%ﬂ
X [XstXc] Obo|¢0>N- (1.29)

One can show that

[XstXc] Tag [Xix}xl] ;= 03 Fap(Q°) (.30)
where
Fop(@Q*) = NN /O h drr? <Aaﬁ<7’) + 2Ba,5(r)>, (1.31)
Aaalt) = (0a(r)aa(r) = Falr) o) [ 42 exp (i/@Precst) Cona(6.0)
(1.32)

B.s(r) = fa(r)fg(r)/QdQ exp (h/@rcosé’)
X |:COS20 Cop (0, ¢) + sin 6 cost Cop.2(0, gb)] ) (1.33)
Caﬂ;1<97 ¢) = CaCﬂYzDCO(ea (b)YEﬁO(ea (b) - DaDﬁY;21<0> ¢>Y251<07 ¢)? <I34)

Cap2(0,0) = CaD3Yi.0(0,0)Yi,1(0, 0)e™ + DoCsY)*1 (6, ¢)Y,0(0, ¢)e',(1.35)

where D, = <l 1— ——| 92> lo and lg are the orbital quantum numbers of the

intermediate states a and (3, respectively.
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3 Ba
X, o B, Ga(@) e

_ _]:a,ﬂ<Q2) N

= 1
Tttt 2
16F2(27r)3 <¢O|bo [XchXs]OTS/O dkk >

(F2)(w(k?) + A&) (w(k?) + Ap)

x {Ffa(k)FfTﬁ(k) — w(k?)Fr, (k) Fly, (k) — w(k*) Frr, (k) F] (k)
+w2(k2)FHa(k)F}Iﬁ(k)} /Q AF - F)oa(@ - E) [xoxsxe] boloo)™.  (1.36)
With this algebra
/ L oa Lo 4
dQ(d - k)os(d - k) = —— o3, (1.37)

we finally obtain

oo _ S Fap(@) (%0 .
GA(Q ) ve T g (47TF)2 /O dkk w(kz)(w(k2)+A5’a)(w(k2)+A€5)

x {Ffa (k)EY, (k) — w(k?) Fr, (k) Yy, (k) — w(k*) Fyr, (k) E] (k)

+w2(l<;2)FHa(k)F}1ﬁ(k)}. (1.38)



Appendix J

Vertex Function for qqm System

In this appendix we will show the expression of the integral form for the

vertex function for qqm. There are

[ st B @) (1)
/dgxﬂa(x)f_y’~ Eny’TjuB(:c)e’iE'f, (J.2)
[ datatars (e (13
/dga:ua(x)'yO’yE’Tju/g(m)e_iE'f. (J.4)

Egs. (J.1) and (J.2) are related by the the hermitian conjugate, as the following
— g T — g
[/ d*xiig (z)7 - k’yE’Tjuﬁ;(x)elk'x] = /d%ﬁg(:ﬂ)’? kY Tiua(2)e T (1.5)

Again Eqs. (J.3) and (J.4) are also related by the the hermitian conjugate,

.t o
[/ d%ﬂg(1:)7075Tjua(x)eik"”} = /dgxﬂa(x)70757'ju5(x)e_1k"”. (J.6)
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J.1 /d?’xuﬁ(fﬁ' E’Y5Tjua(f)eik"f

= NaNaxtx; / V(@) [95(2) —i(F - 2) folw)]1°7 - By ()
i0' - & fo(x)
X Va(E)x g xee™
— NgNaXiX}/di"xyg(ﬁ:) [gg(x)ga(x) (G- k) + f5(x) fulz)(@ - 2)(3 - K)(¢ 33)}

Xija(i‘)Xf’Xc’eik.f

= NgNaxlX;ﬂ/d?’a:yg(i)

= NNk XZX}{{ /000 drx 2* [gﬁ(x)ga(a:) — fﬁ(x)fa(g;)}
X /Qdeg(gz)(a : ];)ya@)eimoso}

i { [ drano) o) [ ancosyiee e }WXC”
0 Q

(J.7)
here we have used
02 .10~ — (2.1
vk = (@R (J.8)
G-2)@G-k)(e-2) = 2(6-2)(F k) —(F-k) (J.9)
and
o N 0 -
=2 ok =) kT
(6-%)e 1<a k> Er (J.10)

When 3 = 151/, only the contribution from the projection [,, = 0 of the

orbital angular momentum [ that belongs to state a does not vanish, then the
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result yields
/ & xllg(T)7 - Fy 1yu0(T)e
_ NONak[xiX}Xl}o(al%){{ /0 e {go(:v)ga(:c)— fol) fa(x)]
X /Q dQe”mOS"CaYao(e,@}

o %{ | deshonsato) [ dncosst=c,y, o0 ¢>} }n o],

x| (& k) Fy, (k)7 ]

= £ (k) {(a . /%>Tj] (J.11)

0,a

where

Fi(k) = NoNak{{ [ r | aersnto) - fato)sao)| [ 0ot viato,of

—21(%{/000 d:c:cfo(x)fa(:c)/QdQcosGeikmCOS@CaY}ao(ea¢)}}- (J.12)

For the Clebsch-Gordan coefficients we use the notation C, = <la0%ms|jmj> and
Y. 0(0,¢) is the usual spherical harmonic. The explicit form of the radial wave
functions ¢, (r) and f,(r), of the normalization constants (N, ) and of the energy
difference (AE,) are already given in Appendix D. With the relation in Eq. (J.5)

we get

- . =t
/d?’m_ta(xﬁ kY Tug(z)e T = [/ d>ziig(z)7y - k:757'jua(x)e‘k’z}
[xlx}xl} TFL(R)(F - F) [XSXch} .

Ff (k) W& - /%)} . (J.13)

a,0

For the special case when state 3 and « are in the state 1s; /5 then Fp )y OF Fy, is

oo 2 2,.2
Fr (k) = N2k‘ d 2 _:C_ 1 — px /dQ ikzcost
W(k) = N {{/ . exp( R)( ) [
. 9 - x’ p2$2 ikzcosd
—21%{/0 dx x exp <—§) ( 72 )/QdQCOSQe }
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1 k2 R?
= —ZNgkR37T3/2(—4+(2—|—/{:2R2)p2)exp (— 7 )
3
= ggff)kFﬂNN(kQ), (J.14)

where Fyy is the TN N form factor normalized to unity at zero recoil (k* = 0):

k?R? k?R? 5
Frvn(k?) = exp <— ) 1+ I-—5 || (J.15)
8 3924
3

4
Fi(k) = Z¢VkFoun (k) (J.16)
Io 59A 7NN . .

we also obtain

9a(T)

= NﬂNaxix}/d%yg(i‘) [95(x) —i(0- &) fa(x)]7 "7
10 - 7 fo ()

=

= NpNaxin} / PrV(@) [95(2) a () — Fo(2)ga(2)]i(F -

= NgNaxix} /000 dr x [gﬁ(x)fa(x) - fg(x)ga(x)]

a Y ~\ ikzcos
w2 /Q IOV (@) (7 - F) Y (2)670 e (7.17)

When 3 = 1s;/3 only the contribution from the projection [,, = 0 of the orbital

angular momentum [ of state o does not vanish, then the result yields
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/deﬂo(x)yony’Tjua(x)eiE'f

= NN R [ de o) fa(e) — fole)gn(a)

0

L0
/ dQe* P CLY) 0(0, @)X X X

Ok
= [xcx fxs} (7 k)Fiy, (k)7 [XstXc] .
= Fy (k) [(5 : /%)Tj] - (J.18)

where

Fiu,(k) = NoNa / " ez lgo(0) fule) — fole)ga(x))

a ikxcosd
ak/dQe CoYioo(0, ). (3.19)

With the relation in Eq. (J.5) we get

At
[ d g (x 7 ~ T]U,a( )e'k'w]
TFT (k)(& - k)
Xsz I+ 11, XsXfXe 0
F

(k)[( k;)} . (J.20)

a,0

/ 0 i ()77 ryuo (2)e T =



Appendix K

Vertex Functions for Quark-Axial Vector

Current and Quark-Pion-Axial Vector Current

In this appendix we will show the expression of the integral form for the
vertex function for the quark-axial vector current and the quark-pion-axial vector

current.

K.1 Vertex Function for Quark-Axial Vector Current
/d3xua(x)737573u/g(x)ei‘ﬁ

= NaNad} (@23 (sal) i D))o e

Xch
- NaNﬁxix} [ #2916 (3201920005 + Ful) (1) - D)on( - ) raFs(2)

TXfXe

— NNBXCXf d?’xyT {ga r)gs(r fa(r)fﬂ(r)]az
EYNCI I }Tsyg Ty xe

- NNﬂxcxf{ 22 [gu1)a5(0) = () f5(r)] [ AQVLE) 7ama V(@) e

0
+2 [[de () fate) [ a5 )eos0 Vi@ Tgyﬂ@)eiwose}wxc. (K1)
0 Q

Here we have used the Pauli spin matrix algebra,

(@ - 2)0i(G - &) = 2(G - 2)d; — o1, (K.2)
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When states a and (8 are in the ground state one obtains
/d%uo(z)v?’v‘r’muo(az)eiﬁ
2ttt [ g2 z
= N, d -——
OXchXs/O T T exp ( Rz)
pr 2 iqx cosf pr 2 igrcosh (= A
X< 03 1—(—) dQ e —|—2<—) dQ et (g - ) cosh
R Q R 7 Jo
XT3 Xs X fXes (K.3)

hence

4-p* 2+ Q°R?)
4 + 6p?

Q2 R2

/dgxao(x)'y?’fySTguo(x)ei‘ﬁ = XZX}Xief 4 {

} 0373 XsXfXc

2 — p?
- (2—1-3,02) FWNN(QQ)XZX}XLUST?, XsXfXe (K.4)
K.2 Vertex Function for Quark-Pion-Axial Vector Cur-

rent

/d%ﬁg(x)’ygqua(az)eig'j

= NNy [ D) e nm) [ ]|
o3 0 i & fa(z)
XT3 Va () X
= NpNax!x} / FaV (@)~ (7 - 2)(F - 0) fo(w) g @) +i(F - D) - D)gale) ful2)|
XT3 Va(@)X X (K.5)

y
[l
=y
>

(K.6)

—~
Qu
=>

-~

—
Q

=)

=
Il
(\V]

=}

Ql
X

=2
+

A

=2

Ql
=

(K.7)



127

/deu5(x)’y3Tjua(:c)eiE'f
= NN} [ @@ {24 G x ) fola)ono

H(E - 4)(6 - 3)[95(0) (o) — Fiol)ga()] b ) o™

= NgNaxix}{— 2i {/000 dx xfg(:c)ga(x)/ngy;(ij) [G- (5 x l;:)} %ei’;’f)}a(i‘)l
] [ dealao)folo) - foe)gn(o)] [ DG-GBy e 9 0) }
XTiX X' (K.8)

For the case when the state « is in the ground state, we obtain

/d%a/g(x)y?’quo(x)eig'f

= N3Ny [XZX}XZ} ,
o0 Ao O o
X {— 21 {/0 dz x fa(x)go(x) /Q dQCsYi,0(0,0)[q- (T x k)] %elm]

! [/ooodx wlgal@)fola) ‘fﬁ(ﬂf)%(ﬂfﬂ/gdg CsYi0(6,9)(7 - 4)(7 - z%)%e“;j}}
XTj |:XSXch:| .

= [t {[0- @ x M) Fuasy(8) + @ )@ B (0 )7 [

= Fu,(k)[3- (3 x k)73 50+ Frv, (k)[(5- )& - R)75] 5.0 (K.9)
where
: 8 > ikxcos
Fr, (k) = —21NgNO%{/ dxa:fg(:v)go(x)/dQCgYZBO(G,(b)ek 9},
0 Q

Fry,(k) = NﬁNO% [/Ooodxx[gg(x)fo(x) — fa(z)go(z)]

X / dQ CsY,0(0, 0) eimosf)} : (K.10)
Q
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For the case when the state (3 is in the ground state, we obtain

/d?’xao(a:‘)’y%jua(x)e“g'f
= NN, [xix}xi]
0

X {_ 21 [ /0 T den fo(z)ga(z) /Q dQ[q- (7 x k)] a%e“?-fcmao(e, ¢)}

" [ | dealmie) ule) = f0)0a(o)] [ 4G (@R et C 00 ¢)] }

e,

- [XZX}XZL{ [Cj (0 ]%)}FVa(k) —(@-q)(7- ]%)FIVa(k)}Tj [XSXfXC]a

= Fy, (k) [g (d x k)’]’j}oa — Fpy, (k) [(5 - 4)(G - k)Tj]Qa, (K 11)
where
Fy (k) = —2iNoNa(% {/OOO dx x fo(r)ga () /Q A CLYi.0(0, 0) eikmcose‘| .

(K.12)
For the special case when the states § and « are in the ground state, we obtain
/ P atio(@)7 Ty0(2) ™ = Fra (B)[d- (5 x B3], (K.13)
where

Frrr, (k)

—QiN(?%[/O dmxfo(m)go(x)/QdQei’mcose}

2ik R p k2R
_ _ , K.14
21302 7 ( 4 ) (K.14)
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