

AN APPLICATION OF THE ART GALLERY PROBLEM TO DETERMINE
THE NUMBER OF CAMERAS PLACED FOR ROADWAY MONITORING

PHONGNARED BOONTUENG
PHONGNARED BOONTUENG

AMPHON KLIARAM

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Applied Mathematics

Suranaree University of Technology
Academic Year 2022

การประยุกตใชปญĀาĀอýิลปเพ่ือกำĀนดจำนüนกลองÿำĀรับตรüจÿอบถนน

พงþนเรý บุญถึง
พงþนเรý บุญถึง

นายอำพล เกลียรัมย

üิทยานิพนธนี้เปนÿüนĀนึ่งของการýึกþาตามĀลักÿูตรปริญญาüิทยาýาÿตรมĀาบัณฑิต
ÿาขาüิชาคณิตýาÿตรประยุกต
มĀาüิทยาลัยเทคโนโลยีÿุรนารี

ปการýึกþา 2565

AN APPLICATION OF THE ART GALLERY PROBLEM TO DETERMINE
THE NUMBER OF CAMERAS PLACED FOR ROADWAY MONITORING

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Master’s Degree.
 Thesis Examining Committee

(Asst. Prof. Dr. Jessada Tanthanuch)
Chairperson

(Dr. Akanat Wetayawanich)
Member (Thesis Advisor)

(Asst. Prof. Dr. Wipawee Tangjai)
Member

(Assoc. Prof. Dr. Yupaporn Ruksakulpiwat)
Vice Rector for Academic Affairs
and Quality Assurance

 (Prof. Dr. Santi Maensiri)
Dean of Institute of Science

·oneuse

อำพล เกลียรัมย : การประยุกตใชปญหาหอศิลปเพื่อกำหนดจำนวนกลองสำหรับตรวจสอบ

ถนน (AN APPLICATION OF THE ART GALLERY PROBLEM TO DETERMINE THE
NUMBER OF CAMERAS PLACED FOR ROADWAY MONITORING) อาจารยที่ปรึกษา
: อาจารย ดร.เอกณัฐ เวทยะวานิช, 58 หนา.

คําสําคัญ: ปญหาหอศิลป/ รูปหลายเหลี่ยมเชิงตั้งฉากหนึ่งหนวย/ ขั้นตอนวิธีคนหาทั้งหมด

 วิทยานิพนธนี้มีจุดประสงคเพื่อที่จะหาขั้นตอนวิธีสำหรับหาจำนวนกลองที่เหมาะสมในการ

ตรวจสอบถนน ที่มีลักษณะเปนรูปหลายเหลี่ยมเชิงตั้งฉากหนึ่งหนวย ซึ่งเปนปญหาที่เกี่ยวของกับ

ปญหาหอศิลปในทางคณิตศาสตร ภายใตขอสมมติที่วา กลองมองเห็นเปนมุมกวาง 90 องศา และมี

ระยะมองเห็นไดอยางไมจำกัด เมื่อสรางขั้นตอนวิธีใหมขึ ้นมา และเปรียบเทียบผลลัพธที่ไดจาก

ขั ้นตอนวิธีคนหาทั ้งหมด พบวา ผลลัพธจากการใชขั้ นตอนวิธีใหมนี ้สามารถหาจำนวนกลองที่

เหมาะสมได โดยมีความซับซอนของการประมวลผลเปนแบบเชิงเสน เพียงแตไมสามารถสรุ ปไดวา

ผลลัพธที่ไดมีจำนวนกลองที่นอยที่สุด สำหรับการใชขั้นตอนวิธีคนหาทั้งหมด จะใหผลลัพธที่ไดมี

จำนวนกลองนอยที่สุดแนนอน แตเมื่อรูปหลายเหลี่ยมเชิงตั้งฉากหนึ่งหนวยที่ พิจารณามีขนาดใหญ

จะตองใชเวลาประมวลผลนานมาก เนื่องจากมีความซับซอนของการประมวลผลเปนแบบฟงกชันเลขชี้

กำลัง อยางไรก็ตาม สำหรับรูปหลายเหลี ่ยมเชิงตั ้งฉากหนึ่งหนวยขนาดเล็ก มีหลายตัวอยางที่
ขั้นตอนวิธีคนหาทั้งสองแบบใหผลลัพธเปนจำนวนกลองเทากัน

สาขาวิชาคณิตศาสตร ลายมือชื่อนักศึกษา_______________________
ปการศึกษา 2565 ลายมือชื่ออาจารยที่ปรึกษา__________________

87wa

contessen

AMPHON KLIARAM : AN APPLICATION OF THE ART GALLERY PROBLEM TO
DETERMINE THE NUMBER OF CAMERAS PLACED FOR ROADWAY MONITORING.
THESIS ADVISOR : AKANAT WETAYAWANICH, Ph.D. 58 PP.

Keyword: ART GALLERY PROBLEM/ UNIT ORTHOGONAL POLYGON/ BRUTE FORCE
ALGORITHM

This study aims to find an algorithm for determining the suitable number of
cameras required to monitor all points on a road system that takes the shape of a unit
orthogonal polygon. This problem is related with the arts gallery problem in
mathematics, and it is studied under the assumption that the cameras have a 90-
degree field of view and an infinite range. After creating the new algorithm and
comparing it with the results of the brute force algorithm, it is found that the new
algorithm does indeed provide an appropriate number of cameras, with only linear
time complexity. However, its results do not guarantee minimality of the number of
cameras. As for the brute force algorithm, it can determine the minimum number of
cameras with certainly, but significantly longer processing time for large unit orthogonal
polygons, as it requires exponential time complexity. Nevertheless, for small unit
orthogonal polygons, there are many examples where both algorithms yield the same
number of cameras.

School of Mathematics Student’s Signature ____________________
Academic Year 2022 Advisor’s Signature _____________________

Enga

contessen

"$,/08-&%(&.&/54

* XPVME MJLF UP FYQSFTT NZ TJODFSF HSBUJUVEF UP NZ BEWJTPS %S�"LBOBU 8FUBZBXBOJDI

GPS IJT VOXBWFSJOH TVQQPSU BOE HVJEBODF UISPVHIPVU NZ SFTFBSDI� * BN HSBUFGVM UP "TTU�

1SPG� %S� +FTTBEB 5BOUIBOVDI GPS QSPWJEJOH UIF JOJUJBM JEFB GPS UIJT XPSL
 GPSNBUUJOH UIF

DPEF JO -B5F9
 BOE BTTJTUJOH JO QSPUPUZQJOH UIF $�� DPEF
 XIJDI QMBZFE B DSVDJBM SPMF

JO EFWFMPQJOH UIF BMHPSJUINT QSFTFOUFE JO UIJT UIFTJT� * BN JNNFOTFMZ UIBOLGVM UP "TTU�

1SPG� %S� 1PK -FSUDIPPTBLVM GPS IJT JOWBMVBCMF HVJEBODF JO JNQSPWJOH UIJT TUVEZ� * BN

EFFQMZ HSBUFGVM UP NZ GBNJMZ BOE GSJFOET GPS UIFJS FNPUJPOBM TVQQPSU BOE FODPVSBHFNFOU

UISPVHIPVU NZ TUVEJFT� 'JOBMMZ
 * XPVME MJLF UP NFOUJPO UIF ųOBODJBM TVQQPSU QSPWJEFE CZ

UIF %145 TDIPMBSTIJQ
 XIJDI NBEF UIJT SFTFBSDI QPTTJCMF�

"NQIPO ,MJBSBN

CONTENTS

Page

ABSTRACT IN THAI . I

ABSTRACT IN ENGLISH . II

ACKNOWLEDGEMENTS . III

CONTENTS . IV

LIST OF TABLES . VI

LIST OF FIGURES . VII

CHAPTER

I INTRODUCTION . 1

1.1 Research objective . 2

1.2 Scope and limitations . 2

1.3 Expected results . 2

II LITERATURE REVIEW . 3

2.1 Definitions . 3

2.2 Art gallery problem . 7

2.2.1 Polygon triangulation . 8

2.2.2 Vertex coloring . 9

2.2.3 Polygon with holes . 10

2.2.4 Orthogonal polygon . 11

2.2.5 Orthogonal polygons with holes 11

2.2.6 Vertex cover . 13

III RESEARCH METHODOLOGY . 14

3.1 Number of vertices in a unit orthogonal polygon 14

3.2 Position of cameras . 16

3.3 Main algorithm . 21

3.4 Brute force algorithm . 26

V

CONTENTS (Continued)
Page

IV RESULTS . 29

4.1 Main algorithm and brute force algorithm 29

V CONCLUSION DISCUSSION AND RECOMMENDATION 32

5.1 Conclusion . 32

5.2 Discussion . 33

5.3 Recommendation . 33

REFERENCES . 35

APPENDICES

APPENDIX A APPLICATION OF C++ CODE FOR MAIN ALGORITHM AND

BRUTE FORCE ALGORITHM 38

A.1 C++ code for the main algorithm 39

A.2 C++ code for brute force algorithm 50

CURRICULUM VITAE . 59

LIST OF TABLES

Table Page

3.1 Device specifications and Windows specifications. 21

4.1 The result of small unit orthogonal polygon by using main algorithm

and brute force algorithm. 29

4.2 The result of large unit orthogonal polygon by using main algorithm

and brute force algorithm. 31

LIST OF FIGURES

Figure Page

2.1 13-vertex simple polygon. 4

2.2 Polygon with holes. 4

2.3 Orthogonal polygon. 5

2.4 Unit orthogonal polygon. 5

2.5 Orthogonal polygons P1 and P2 are not unit orthogonal polygons

because there are integer coordinate points W1 and W2 lying in the

interior of P1 and P2 respectively. 5

2.6 Visibility in a polygon. 6

2.7 Vertex guard positions are represented by two circle position. 6

2.8 Edge guard position is represented by a circle position. 6

2.9 Point guard position is represented by a circle positions. 6

2.10 Decagon, which is a different shape, may not have the same min-

imum number of guards. A circle position is used to indicate the

position of the guard. 7

2.11 Polygon triangulation. 8

2.12 Polygon triangulation with holes. 8

2.13 The color with the least number of appearances is represented by

two “small triangles” at the vertices. These are the positions to

place the guards. 9

2.14 Quadrilaterals of orthogonal polygon and vertex coloring. 11

2.15 An orthogonal polygon with 44 vertices and 4 holes that requires

12 vertex guards. A circle position is used to indicate the location

of guard. 12

2.16 Vertex cover. 13

3.1 Camera placement in the case of orthogonal polygon. 14

VIII

LIST OF FIGURES (Continued)

Figure Page

3.2 16-vertex unit orthogonal polygon without hole with a = 10 and

b = 6. 15

3.3 “x” refers to vertex position. (a) A straight way. (b) An edge position.

(c) A corner position. (d) A triple junction position. (e) A crossroad

position. 16

3.4 24 vertices unit orthogonal polygon with holes where E = 2, C =

2, T = 6, F = 1 and 24 = 2(2) + 2(2) + 2(6) + 4(1). 16

3.5 Adjust the camera position so that it has a parallel or perpendicular

line of sight with the border. 17

3.6 Nine proper camera placement positions for this thesis. 17

3.7 Moving the camera Vi from the straight way position to the nearest

position. (a) moving to the edge position. (b) moving to the corner

position. (c) moving to the triple junction position. (d) moving to

the crossroad position. 18

3.8 (a) Two cameras V1 and V2 can cover the crossroad. (b) Three cam-

eras V1, V2 and V3 can cover the crossroad. (c) Three cameras V1,

V2 and V3 can cover the crossroad. 18

3.9 Moving the cameras V1 and V2 from the crossroad position to the

triple junction position and the corner position respectively. 19

3.10 The camera positions are limited to only four positions. 19

3.11 Visible area of position W1 and W2. 20

3.12 Check if the corner position is not covered and two adjacent po-

sitions around this corner position are not covered, then place a

camera at this corner position. 22

IX

LIST OF FIGURES (Continued)

Figure Page

3.13 Consider triple junction positions that are still not covered and

check if one of the three adjacent positions around these triple

junction positions is covered, then place the camera at those triple

junction positions. 23

3.14 Check which positions are still not covered, then place cameras at

those positions. 23

3.15 Flowchart of the main algorithm. 24

3.16 Step of the main algorithm. 25

3.17 Flowchart of the brute force algorithm. 27

3.18 Step of the brute force algorithm. 28

5.1 The number “1” are refer to camera positions and the two circle

positions are the improvement of cameras positions. 33

CHAPTER I

INTRODUCTION

Camera placement on roads is beneficial for modern traffic management. With

advancements in technology, cameras have become an important part of monitoring and

ensuring road safety, managing traffic flow, and assisting in law enforcement activities.

Moreover, cameras can provide real-time information, so authorities can respond and

implement measures to improve traffic flow and ensure smooth transportation. To de-

termine camera placement on roads, there are several factors need to be considered.

These factors include traffic volume, accident-prone areas, crime hotspots, road geome-

try, visibility, and legal requirements. Strategic placement ensures that the camera system

provides optimal coverage and cover the most important areas. It helps minimizing the

number of cameras required for road surveillance. Then, we can reduce infrastructure

costs, maintenance efforts, and resource allocation while maintaining the visible area of

monitoring and security. This raises an important question that what is the minimum

number of cameras required to monitor every point on the road? and this problem is

related to one of the problem in mathematics which known as “art gallery problem”.

The concept of art gallery problem was proposed in 1973 by Victor Klee (Stewart,

2015). He presented a problem to Václav Chvátal “What is the minimum number of

stationary guards required to protect an art gallery?” Geometrically, the problem can be

formulated as follows, given an n vertices simple polygon “what is the minimum number

of guards needed to see every point within the interior of the polygon?” Chvátal (1975)

was able to prove that for simple polygons,
⌊n
3

⌋
guards are both necessary and sufficient

to protect the gallery when there are n vertices in the polygon. However, his proof

was complicated and relied on induction. Fisk (1978) developed a much simpler proof

using triangulation, a method of dividing a polygon into triangles and vertex coloring. This

problem has many real-life applications that have not only motivated the mathematics

community to find better solutions due to real-life constraints, but also inspired various

2

versions of the problem that model real-world scenarios.

Therefore, in this research the approach involves examining the unit orthogonal

polygon which is an orthogonal polygon with a width of one unit. We focus on determining

a suitable cameras placement for monitoring every point on roads and we will compare

the number of cameras utilized by main algorithm with the brute force algorithm to

evaluate its effectiveness.

1.1 Research objective

To find an algorithm that can provide a suitable number and position of cameras

needed to guard every point on the roads of the unit orthogonal polygon, assuming that

the cameras have a 90-degree field of view and an effective range that extends to infinity.

1.2 Scope and limitations

1. We study the unit orthogonal polygon, which is an orthogonal polygon with a width

of one unit.

2. We assume that cameras have a 90-degree field of view and an effective range that

extends to infinity.

1.3 Expected results

We can find an algorithm that can provide a suitable number and position of cam-

eras needed to guard every point on the roads of the unit orthogonal polygon, assuming

that cameras have a 90-degree field of view and an effective range that extends to infinity.

CHAPTER II

LITERATURE REVIEW

This chapter presents the background of the art gallery problem and the concept

of vertex cover.

2.1 Definitions

Definition 2.1 (Vector space R2) The vector space R2 is defined as the set of all ordered

pairs of real numbers, represented as two-dimensional vectors (x, y), where x and y are

real numbers. The operations of addition and scalar multiplication on vectors in R2 are

defined as follows:

Addition of vectors:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Scalar multiplication of vectors:

c · (x, y) = (cx, cy)

where c is a real number.

Definition 2.2 (Distance function) Given two points P1(x1, y1) and P2(x2, y2) represented

as vectors (x1, y1) and (x2, y2) inR2, respectively. The distance function d can be defined

by using the Euclidean distance formula:

d(P1, P2) =
√
(x2 − x1)

2 + (y2 − y1)
2.

This study we investigate the problem by using analytic geometry on R2, encom-

passing considerations of length, angles and area. For example, the straight line between

point P1 and P2 is

P1P2 = { tP1 + (1− t)P2 | 0 ≤ t ≤ 1 } .

4

Definition 2.3 (Simple polygon) Given {v1, v2, v3, . . . , vn} ⊂ R2 and E =

{e1, e2, e3, . . . , en} where ei = vivi+1 for all i = 1, 2, 3, . . . , n and vn+1 = v1. A

simple polygon P = (V,E) is a closed curve consisting of the set of vertices V and the

set of edges E such that there are no intersecting consecutive edges and there is no hole

inside (figure 2.1).

v1 v2

v3
v4

v5 v6

v7v8

v9v10

v11

v12

v13

Figure 2.1 13-vertex simple polygon.

Definition 2.4 (Diagonal) A diagonal is a straight line that connects two non-adjacent

vertices of a simple polygon. It is a line segment that joins two vertices of a simple

polygon that are not connected by an edge.

Definition 2.5 (Polygon with holes) Given a simple polygon P and a set of m disjoint sim-

ple polygons P1, P2, . . . , Pm contained in the interior of P . We call P | {P1, P2, . . . , Pm}

a polygon with m holes (figure 2.2).

P1 P2 P3
P4

P

Figure 2.2 Polygon with holes.

Definition 2.6 (Orthogonal polygon) An orthogonal polygon is a polygon whose all sides

meet at right angles and the interior angle is the angle formed by two adjacent sides

inside the polygon. Thus the interior angle at each vertex is either 90° or 270° (figure 2.3).

5

Figure 2.3 Orthogonal polygon.

Definition 2.7 (Unit orthogonal polygon) An orthogonal polygon P is a unit orthogonal

polygon such that every vertex of P has integer coordinates, and no integer coordinate

point lies in the interior of P .

According to this definition, any unit orthogonal polygon can be represented by

a matrix. For example, in the figure 2.4, every exterior unit square is represented by the

number 0, and every interior unit square is represented by the number 1.

0 0 0 0 0 0
0
0
0
0
0

0
0
1

0 0 0 0 0
0
00

0 0
0

1
1
1
1 1 1 1

1
1
1 1

Figure 2.4 Unit orthogonal polygon.

P1

P2W1 W2

Figure 2.5 Orthogonal polygons P1 and P2 are not unit orthogonal polygons because there

are integer coordinate points W1 and W2 lying in the interior of P1 and P2 respectively.

Definition 2.8 (Visibility in a polygon) Two points p and q of polygon P are said to be

visible from each other if the straight line from p to q lies completely in P (figure 2.6).

6

p

q

P

Figure 2.6 Visibility in a polygon.

Definition 2.9 (Guards in polygon)

• A guard is a point inside or on the boundary of the polygon that can see other

points in the polygon.

• A vertex guard refers to a guard that is placed anywhere on a vertex (figure 2.7).

• An edge guard refers to a guard that is placed anywhere along an edge (figure 2.8).

• A point guard refers to a guard that is placed anywhere in the polygon (figure 2.9).

• A mobile guard refers to a guard that is allowed to patrol along a line segment lying

in the polygon.

Figure 2.7 Vertex guard positions are represented by two circle position.

Figure 2.8 Edge guard position is represented by a circle position.

Figure 2.9 Point guard position is represented by a circle positions.

7

2.2 Art gallery problem

Art gallery problem begins with the question that “how many guards are needed

to ensure the security of an art gallery?” The objective is to position the guards in such

a way that every point inside the polygon is visible from at least one guard. The original

art gallery problem aimed to determine the minimum number of guards required to have

visibility over every point within an n-vertex simple polygon. In other words, the question

was how many guards are needed to ensure the security of the entire museum. Victor

Klee (Stewart, 2015) first presented this problem to Vaclav Chvátal in 1973. Chvátal (1975)

was able to prove that
⌊n
3

⌋
guards are both necessary and sufficient to cover the entire

gallery when the polygon has n vertices. However, Chvátal’s proof was quite complicated,

relying on the method of induction. Fisk (1978) provided a much simpler proof using

triangulation, a technique that involves decomposing a polygon into triangles, and the

coloring of vertices. Fisk’s approach offered a more straightforward demonstration of the

minimum number of guards required for complete coverage.

For the number of guards that are mentioned above, the meaning of
⌊n
3

⌋
guards

are both necessary and sufficient to cover the entire gallery when the simple polygon has

n vertices is that
⌊n
3

⌋
is the upper bound of the number of elements of a set of guards

that can guard simple polygon, so for simple polygons with the same number of vertices

but different shape may use a number of guards less than
⌊n
3

⌋
. However,

⌊n
3

⌋
guards

can guarantee that they can guard simple polygon as shown in figure 2.10.

1
2

3

4

5 6

7

8

9

10

1

2 3

4 5

6 7

8

910

1

2

3 4

5

6

7

89

10

Figure 2.10 Decagon, which is a different shape, may not have the same minimum number

of guards. A circle position is used to indicate the position of the guard.

8

2.2.1 Polygon triangulation

Polygon triangulation is a technique used to divide a simple polygon into a col-

lection of triangles. There are various methods for solving the triangulation problem, and

one of the method that is called “ear trimming.” In this approach, an “ear” is defined

as a vertex and its two adjacent neighbors, forming a triangle that can be drawn without

intersecting any other edges inside the polygon where the added side of the triangle is

contained in the polygon. The algorithm identifies these ears and removes them from

the polygon. For a vertex that is not an ear, the algorithm proceeds to the next vertex.

The process continues until only one triangle remains, indicating that the polygon has

been fully triangulated.

Figure 2.11 Polygon triangulation.

Triangulating a polygon with holes is achievable by extending lines from the holes

to the main polygon. This process considers the holes as part of the overall polygon, al-

lowing us to apply the same triangulation method as before. It is important to note that

triangulation for a polygon is not a unique. The order in which the vertices of the poly-

gon are processed can lead to different sets of diagonals generated by the triangulation

algorithm. As a result, there can be multiple valid triangulations for the same polygon,

depending on the chosen vertex handling order.

Figure 2.12 Polygon triangulation with holes.

9

2.2.2 Vertex coloring

Vertex coloring is a fundamental concept in graph theory. It involves giving differ-

ent colors to each of a graph’s vertices so that no two adjacent vertices have the same

color. The objective of vertex coloring is to determine the minimum number of colors

set of colors needed to color a graph’s vertices so that no two adjacent vertices share

the same color. This minimum number is called the chromatic number of the graph.

Here are some important theorems and properties related to vertex coloring.

Theorem 2.1 (The Four-Color Theorem (Appel and Haken, 1975)) For any planar graph,

a graph that can be drawn on a plane without any edge crossings, can be colored with

at most four colors in such a way that no two adjacent vertices have the same color.

Theorem 2.2 (West, 1996) For any triangulation graph G, its chromatic number χ(G)

satisfies the inequality χ(G)≤∆(G)+1, where∆(G) is the maximum degree of a vertex

in G.

In the art gallery problem, the idea of Fisk’s proof is using the triangulation method

for a simple polygon. After that, it can be colored by using three different colors: red,

green, and blue, as shown in figure 2.13. The coloring algorithm is relatively simple. One

random triangle is initially colored. Then, adjacent triangles can be colored since they

share two vertices with the first triangle and have only one missing color. This process

continues until all vertices are colored. After all vertices are colored, the color that has

been used the least is then used to place guards at the vertices with the least used color.

It is obtained that the number of vertices that are placed guard is at most
⌊n
3

⌋
.

Figure 2.13 The color with the least number of appearances is represented by two “small

triangles” at the vertices. These are the positions to place the guards.

10

2.2.3 Polygon with holes

First, we present Chvátal’s Art Gallery theorem (Chvátal, 1975). This theorem is

known as an upper bound and there is no theorem that can provide the number of guards

less than this theorem. Therefore, many researchers are interested in the study of specific

polygon or changing the problem, such as considering the hole inside the polygon.

Theorem 2.3 Any polygon with n vertices can always be guarded with
⌊n
3

⌋
guards, and

these guards are always sufficient and necessary to cover a polygon.

The concept of the art gallery problem was extended to include cases where there

are holes in the polygon. O’Rourke (1987) made significant contributions by presenting

the first results on guarding polygon with holes.

Theorem 2.4 Any polygon with n vertices and h holes can always be guarded with⌊
n+ 2h

3

⌋
vertex guards.

Shermer (1982) proposed a conjecture suggesting that there exists a lower number

of guard.

Conjecture 2.1 Any polygon with n vertices and h holes can always be guarded with⌊
n+ h

3

⌋
vertex guards.

In 1982, Shermer provided a proof for his conjecture in the case of h = 1. The

conjecture remains open for h > 1, and then it is extended to the case of point guards.

In the case of point guards, many researchers provide the result, such as Bjorling-Sachs

and Souvaine (1991), as well as Hoffmann, Kaufman, and Kriegel (1991). They have inde-

pendently provided proof that any polygon with n vertices and h holes can always be

guarded with
⌊
n+ h

3

⌋
point guards.

Theorem 2.5 Any polygon with n vertices and h holes can always be guarded with⌊
n+ h

3

⌋
point guards.

The concept of art gallery problem has been studied by many researchers. So

various cases of polygons have been investigated. One particularly famous case is the

orthogonal polygon, which will be discussed in the next section.

11

2.2.4 Orthogonal polygon

In the art gallery problem, orthogonal polygons have received much attention.

This is perhaps because most real buildings are orthogonal, and thus the result will be

useful to apply to real problems. However, the study of orthogonal allows us to obtain

very interesting results in mathematics. The first major result here was presented by Kahn,

Klawe and Kleitman (1983).

Theorem 2.6 Any orthogonal polygon with n vertices can always be illuminated with
⌊n
4

⌋
vertex guards.

This proof was based on a similar technique to used by Fisk (1978). The main

idea of their proof is to partition an orthogonal polygon into convex quadrilaterals. By

adding internal diagonals to each of these quadrilaterals and the graph, thus obtained

four-vertex colored.
1 2

3
4

5 6

7 8

9 10

11 12

1314

15
16

1718

19
20

Figure 2.14 Quadrilaterals of orthogonal polygon and vertex coloring.

2.2.5 Orthogonal polygons with holes

In 1987, O’Rourke proved that any orthogonal polygon with n vertices and h

holes can always be guarded with
⌊
n+ 2h

4

⌋
vertex guards and provide the conjecture

that
⌊n
4

⌋
point guards are always sufficiennt to guard any orthogonal polygon with holes.

Aggarwal (1984) was able to verify this conjecture for h = 1, 2. It then remained open

until 1990, Hoffmann (1990) provided a proof.

Theorem 2.7 Any orthogonal polygon with n vertices and h holes can always be guarded

with
⌊n
4

⌋
point guards.

12

According to theorem 2.7, any orthogonal polygon can always be guarded by
⌊n
4

⌋

point guards regardless of whether an orthogonal polygon with or without holes. However

for vertex guards, the best-known upper bound is
⌊
n+ 2h

4

⌋
, as proposed by O’Rourke.

However, it has been recognized for sometime that
⌊n
4

⌋
vertex guards are not always

enough to guard orthogonal polygons with holes. For instance, the polygon depicted in

figure 2.15, featuring 44 vertices and 4 holes, requires 12 vertex guards.

Figure 2.15 An orthogonal polygon with 44 vertices and 4 holes that requires 12 vertex

guards. A circle position is used to indicate the location of guard.

In 1982, Shermer made the following conjecture for orthogonal polygons with

holes.

Conjecture 2.2 Let P be an orthogonal polygon with n vertices and h holes, then⌊
n+ h

4

⌋
vertex guards are sufficient to cover orthogonal polygon P .

For this conjecture Kahn, Klawe and Kleitman (1983) proved Shermer’s conjecture

for h = 0. Aggarwal (1984) proved Shermer’s conjecture for h ≤ 2.

The orthogonal art gallery problem interests many researchers in finding more

conditions and the minimum number of guards.

Michael and Pinciu (2016) study the orthogonal art gallery theorem with con-

strained guards, where the guards are constrained to only move along certain paths.

Theorem 2.8 Let V ∗ and E∗ be specified sets of vertices and edges of P . Then P has a

guard set of cardinality at most
⌊
n+ 3|V ∗|+ 2|E∗|

4

⌋
that includes each vertex in V ∗

and at least one point of each edge in E∗.

13

2.2.6 Vertex cover

In graph theory, a vertex cover of a graph is a set of vertices that contains at least

one endpoint of every edge in the graph. The minimum vertex cover problem is the

optimization problem of finding a vertex cover of minimum cardinality. It is NP-hard, so it

cannot be solved by a polynomial-time algorithm if P ̸= NP (Garey and Johnson, 1979).

A vertex cover can be used to solve a variety of problems in computer science

and operation research. For example, it can be used to find the minimum number of

guards needed to patrol a security area or the minimum number of servers needed to

provide a certain level of service.

There is a number of different algorithms for finding vertex covers. Some of the

most common algorithms include (Cormen, Leiserson, Rivest, and Stein, 2009).

• The greedy algorithm: this algorithm starts with an empty set of vertices and then

adds a vertex to the set one by one, by choosing the vertex that covers the most

edges.

• The branch-and-bound algorithm: this algorithm starts by considering all possible

vertex covers and then recursively eliminates vertex covers that cannot be optimal.

• The local search algorithm: this algorithm starts with a random vertex cover and

then iteratively improves the cover by swapping vertices in and out of the cover.

Figure 2.16 Vertex cover.

CHAPTER III

RESEARCH METHODOLOGY

In this chapter, we present the theorem and the algorithms needed in this work.

First, we provide the idea of this thesis.

• The traditional art gallery problem and this thesis differ mostly in their methodolo-

gies. The classical art gallery problem utilizes graph theory and focuses on visibility

without considering length, but this thesis investigates the problem by using analytic

geometry on R2, encompassing considerations of length, angles, and area.

• In the case of the orthogonal polygon, as shown in figure 3.1. If we place a guard

at a circled position, we notice that the guard cannot cover the entire figure. For

simplification, we study the case of a unit orthogonal polygon.

Figure 3.1 Camera placement in the case of orthogonal polygon.

• The camera placement problem in this thesis is studied in the case of two dimen-

sions for a unit orthogonal polygon.

• We add two important limitations, including that cameras have a 90-degree field of

view, which is different from the classical problem that cameras have a 360-degree

field of view and an effective range that extends to infinity.

3.1 Number of vertices in a unit orthogonal polygon

For a unit orthogonal polygon without hole with n vertices, the number of interior

angles of 90° and 270° is a and b, respectively, as shown in figure 3.2. We consider the

15

total number of angles and the sum of all interior angles in the unit orthogonal polygon,

we obtain a system of equations:

a+ b = n

90a+ 270b = 180(n− 2).

The solution of system of equation is

a =
n+ 4

2

b =
n− 4

2
.

Therefore, the number of vertices must be even, and the vertices of a unit or-

thogonal polygon can be determined by counting either the total number of 90° interior

angles or the total number of 270° interior angles of the polygon.

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16

Figure 3.2 16-vertex unit orthogonal polygon without hole with a = 10 and b = 6.

In the context of a unit orthogonal polygon with holes, which has n vertices, it is

necessary to consider the vertices of holes within the shape. So, for finding the number

of vertices in term of the number of 90° interior angles and the number of 270° interior

angles is complicated. Therefore, the unit orthogonal polygon is divided into five little

forms. A straight way, an edge position, a corner position, a triple junction position, and

a crossroad position are the five main parts of the shape (see figure 3.3) as follow:

• there is no vertex for any straight way;

• there are two vertices for any edge position;

• there are two vertices for any corner position;

16

• there are two vertices for any triple junction position;

• there are two vertices for any crossroad position.

1

2

1

2

1 2

1 2

3 4

straight way edge position corner position triple junction position crossroad position

(a) (b) (c) (d) (e)

Figure 3.3 “x” refers to vertex position. (a) A straight way. (b) An edge position.

(c) A corner position. (d) A triple junction position. (e) A crossroad position.

Given the number of edge positions, corner positions, triple junction positions, and

crossroad positions in a unit orthogonal polygon with holes asE,C, T, andF respectively,

we can determine the number of vertices as follows:

n = 2E + 2C + 2T + 4F.

Moreover, this equation remains valid for any unit orthogonal polygon without hole.

C T T E

T F T

C T T E

1 2

3 4 5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20 21 22

23 24

Figure 3.4 24 vertices unit orthogonal polygon with holes where E = 2, C = 2, T = 6,

F = 1 and 24 = 2(2) + 2(2) + 2(6) + 4(1).

3.2 Position of cameras

When placing the cameras in positions such as straight way, edge position, corner

position, triple junction position, and crossroad position, we can agree to the following

17

rule: place the camera at a border or a vertex, aligning its view direction parallel to or

perpendicular to the border only (see figure 3.5). If the camera is not placed at the

border or vertex, we can adjust its position according to the predetermined rule without

changing the number of cameras. Consequently, there are a total of nine proper camera

placement positions (see figure 3.6).

Figure 3.5 Adjust the camera position so that it has a parallel or perpendicular line of

sight with the border.

E

C T T

F F F F

Figure 3.6 Nine proper camera placement positions for this thesis.

For any straight way position, we can move the camera to the nearest position in

the opposite direction of the visible area of the camera, such as the edge position, corner

position, triple junction position, or crossroad position, and the new camera position can

still cover the visible area of the camera at the straight way position (see figure 3.7).

After moving cameras from a straight way position, they remain in eight proper camera

placement positions.

18

Vi Vi

Vi Vi

(a) (b) (c) (d)

Figure 3.7 Moving the camera Vi from the straight way position to the nearest position.

(a) moving to the edge position. (b) moving to the corner position. (c) moving to the triple

junction position. (d) moving to the crossroad position.

For any crossroad, it can be covered by at least two cameras (see figure 3.8). If

there exists a camera at the crossroad position, we can remove or move this camera to

the nearest position in the opposite direction of the visible area of the camera, such as

the edge position, the corner position, or the triple junction position, and the new camera

position can still cover the visible area of the camera at the crossroad positions.

• In figure 3.8(a), we move V1 in the down direction and move V2 in the right direction.

• In figure 3.8(b), we move V2 in the right direction, move V3 in the up direction, and

remove V1.

• In figure 3.8(c), we remove V3.

(a) (b) (c)

V1

V2 V2

V1 V3

V1

V3

V2

Figure 3.8 (a) Two cameras V1 and V2 can cover the crossroad. (b) Three cameras V1, V2

and V3 can cover the crossroad. (c) Three cameras V1, V2 and V3 can cover the crossroad.

19

V1

V2

V 0
1

V 0
2

Figure 3.9Moving the cameras V1 and V2 from the crossroad position to the triple junction

position and the corner position respectively.

From the above conclusion, it follows that for a unit orthogonal polygon, whether

it has holes or not, the camera positions are limited to only four positions (see figure 3.10).

E
C T T

Figure 3.10 The camera positions are limited to only four positions.

Let P be a unit orthogonal polygon with or without holes and Ṽ =

{V1, V2, V3, . . . , Vk} be the set of camera positions that can guard the area inside the

unit orthogonal polygon P .

Theorem 3.1 Let Ṽ be an arbitrary set of camera positions that can guard the area

inside the unit orthogonal polygon P . If there exists a corner position W1 and an edge

position W2 satisfying the following properties:

1. W2 lies within the visible area of W1, and

2. there are no triple junctions or crossroads within the intersecting visible area of

W1 and W2.

Then
(
Ṽ − {W2}

)
∪{W1} can still effectively guard the area inside the unit orthogonal

polygon P .

Proof Since positions W1 and W2 can be either members or non-members of Ṽ . We have

the following two cases.

• W1 ∈ Ṽ . Since W2 lies within the visible area of W1, we can remove the edge

position W2 from the set Ṽ , if possible, while keeping the visible area the same.

20

• W1 ̸∈ Ṽ . This implies that W2 ∈ Ṽ , so we can use the camera at corner position

W1 instead of W2 while keeping the visible area the same.

W1

W2

W1

W2

W1

W2

F
T

Figure 3.11 Visible area of position W1 and W2.

From the above conclusion, we search for the specific corner positions where we

must place cameras. This is beneficial in reducing the number of executions of program

when using a brute force algorithm.

21

We use C++ code programming to find the number of cameras for the unit or-

thogonal polygon. The device specifications and Windows specifications are shown in the

table 3.1.

Table 3.1 Device specifications and Windows specifications.

Device Specification

Processor Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

Installed RAM 16.0 GB

System type 64-bit operating system, x64-based processor

Windows specifications

Edition Windows 10 Home Single Language

Version 22H2

OS build 19045.3208

Experience Windows Feature Experience Pack 1000.19041.1000.0

3.3 Main algorithm

The main algorithm starts from one edge position and then recursively moves

and places cameras. The concept of recursively moving is walking in the unit orthogonal

polygon, when reaching an intersection, it will choose one of the available paths. Upon

reaching a dead end, it will backtrack to the last intersection and then choose a new path

at the intersection. This algorithm is called the depth-first search (DFS) algorithm. During

the walk, it will continuously check the conditions for placing cameras. After completing

this process, it will recheck the entire unit orthogonal polygon. If there are still positions

not covered by cameras, additional cameras will be placed until all positions in the unit

orthogonal polygon are covered. Then, we select a new starting edge position to process

the algorithm and consider all edge starting positions. Different starting positions may

obtain different results, so we choose the result with the minimum number of cameras

for every edge starting position.

22

The concept of using the main algorithm to solve the camera placement problem

can be outlined with the following steps:

1. Display the unit orthogonal polygon and store data of straight way, edge position,

corner position, triple junction, and crossroads.

2. Choose the starting position from an edge position. If there is no edge position

in the unit orthogonal polygon, then choose a corner position to be the starting

position.

3. Move from the starting position to the next corner position. If the corner position

and two adjacent positions around this corner position are not covered (figure 3.12):

• if so, place a camera at this corner position.

• If not, move to the next corner position.

C

XXX

Figure 3.12 Check if the corner position is not covered and two adjacent positions around

this corner position are not covered, then place a camera at this corner position.

4. Move to the next corner position and repeat step 3 until one has already moved

to every corner position in the unit orthogonal polygon.

5. After placing the cameras at a possible position in step 4, if there is a position that is

yet covered, then it is a triple junction position or edge position. For remaining triple

junction positions, if one adjacent positions around these triple junction positions

is covered (figure 3.13):

• if so, place a camera at this triple junction position,

• If not, move to the next triple junction position.

23

In this step, we will check all triple junction positions that satisfy above condition.

X

X

X T

adjacent positions

adjacent positions

Figure 3.13 Consider triple junction positions that are still not covered and check if one of

the three adjacent positions around these triple junction positions is covered, then place

the camera at those triple junction positions.

6. Check the remaining positions to see which positions are still not covered (figure

3.14):

• if so, place a camera at this position;

• if not, move to the next position.

X

X

X

X

X

X X X X

X X X X X

Figure 3.14 Check which positions are still not covered, then place cameras at those

positions.

7. Change the starting position and repeat steps 2–6 to find the minimum number of

cameras for the main algorithm.

24

Start

Fill cameras at

corner positions

Choose new starting

edge position

Check if all

positions

are covered

Fill cameras at triple

junction positions

Fill cameras at

remaining positions

Check if all

positions

are covered

Check if every

starting edge

position is

chosen

End

Yes

Yes

Yes
No

No No

Store data positions by

using the DFS algorithm

Figure 3.15 Flowchart of the main algorithm.

25

In figure 3.16, we denote that S is a starting position, E is an edge position, C is

a corner position, 3 is a triple position, 4 is a crossroad position, 1 is a camera position,

and X is an area that is covered by cameras.

Change starting edge position

Starting position S

Figure 3.16 Step of the main algorithm.

26

3.4 Brute force algorithm

In the main algorithm, we choose the result with the minimum number of cameras

for every starting position. However, it does not guarantee that it is the minimum number

of cameras because, in some cases, the result obtained by the main algorithm can reduce

some camera positions. To compare the efficiency of main algorithm, it is necessary to

use the brute force algorithm to find the minimum number of cameras. The algorithm

starts by placing one camera at every possible position and then checks if these cameras

can cover every area within the unit orthogonal polygon. If not, we add more cameras,

starting with 2, 3, and so on, until we find the minimum of cameras that can cover the

entire area.

Suppose that unit orthogonal polygon is P , the concept of Brute force algorithm

for solving the camera placement problem can be outlined with the following steps:

1. Display an image of a unit orthogonal polygon along with counting the number of

edges, corners and triple junctions.

2. Store the data of all possible of camera positions such as edge positions, corner

positions, and triple junction positions in set Ṽ . We obtain that

∣∣∣Ṽ
∣∣∣ = ℓ = E + C + 2T.

3. Let K be a set of camera positions such that K ⊂ Ṽ .

• Suppose that |K| = 1 so there are

⎛

⎝ℓ

1

⎞

⎠ possible scenario. Then, checks

if these cameras can cover every area within the unit orthogonal polygon. If

not, go to next step.

• Suppose that |K| = 2 so there are

⎛

⎝ℓ

2

⎞

⎠ possible scenario. Then, checks if

these cameras can cover every area within P . If not, go to next step.

• Increase the number of element in set K , until we find the set K that can

cover every area within P .

27

Start

Place one camera

Add one more

camera
Change camera positions

EndYes

Yes No

No

Check that

all positions

are covered

Check that

cameras are placed

at all possible

positions

Store data positions by

using the DFS algorithm

Figure 3.17 Flowchart of the brute force algorithm.

28

In figure 3.18, we denote that E is an edge position, C is a corner position, 3 is a

triple position, 4 is a crossroad position, 1 is a camera position and X is a position that is

covered by cameras.

𝐾 =1

𝐾 =2

Increase the number of 𝐾

Figure 3.18 Step of the brute force algorithm.

CHAPTER IV

RESULTS

In this thesis, we develop the main algorithm and the brute force algorithm (see

more in the appendix), and this chapter presents the results of both algorithms for the

unit orthogonal.

4.1 Main algorithm and brute force algorithm
The result of unit orthogonal polygon with or without holes by using Main algo-

rithm and Brute force algorithm are shown in table 4.1 and table 4.2

Table 4.1 The result of small unit orthogonal polygon by using main algorithm and brute

force algorithm.

No. Main algorithm Brute force algorithm Information

1

Number of cameras=2

Time=0.717 s

Number of cameras=2

Time=0.170 s

Vertices=12

Blocks=10

Edge=4, Corner=0

Triple=0, Crossroad=1

All camera positions=4

2
Number of cameras=2

Time=0.768 s

Number of cameras=2

Time=0.215 s

Vertices=14

Blocks=23

Edge=4, Corner=1

Triple=0, Crossroad=1

All camera position=5

30

Table 4.1 (Continued) The result of small unit orthogonal polygon by using main algo-

rithm and brute force algorithm.

No. Main algorithm Brute force algorithm Information

3

Number of cameras=3

Time=0.653 s

Number of cameras=3

Time=0.238 s

Vertices=14

Blocks=10

Edge=3, Corner=3

Triple=1, Crossroad=0

All camera position=8

4

Number of cameras=3

Time=0.719 s

Number of cameras=3

Time=0.250 s

Vertices=18

Blocks=13

Edge=4, Corner=3

Triple=0, Crossroad=1

All camera position=7

5

Number of cameras=7

Time=0.939 s

Number of cameras=7

Time=715.483 s

Vertices=32

Blocks=42

Edge=5, Corner=6

Triple=5, Crossroad=0

All camera position=21

31

Table 4.2 The result of large unit orthogonal polygon by using main algorithm and brute

force algorithm.

No. Main algorithm Brute force algorithm Information

1

Number of cameras=16

Time=2.114 s

No data

Vertices=84

Blocks=64

Edge=13, Corner=18

Triple=7, Crossroad=2

All camera position=45

2

Number of cameras=71

Time=6.790 s

No data

Vertices=334

Blocks=659

Edge=30, Corner=73

Triple=56, Crossroad=4

All camera position=215

When considering the result of some small unit orthogonal polygon (see table

4.1), it will be found that the number of cameras, when using the main algorithm, is

minimum, but the execution time of brute force algorithm will increase when the camera

positions increase. When observing example No.5 in the table 4.1, it can be found that

the execution time of both algorithms differs significantly.

When considering the large unit orthogonal polygon with a large number of camera

positions (see table 4.2), it found that the execution time of the brute force algorithm

becomes excessively high to wait for results. However, upon using the main algorithm,

results can be generated within a few seconds. Although the obtained results may not

represent the minimum number of cameras, considering the execution time, the results

fall within an acceptable range.

CHAPTER V

CONCLUSION DISCUSSION AND RECOMMENDATION

5.1 Conclusion

Using the main algorithm to find the number of cameras that can monitor all areas

of a unit orthogonal polygon with or without holes cannot guarantee that it provides the

minimum number. However, the brute force algorithm is one algorithm that can find the

minimum number of cameras. Therefore, we utilize the brute force algorithm to assess

the effectiveness of the main algorithm, leading us to the following conclusion:

1. When considering some small unit orthogonal polygon, both algorithms can find

the same number of cameras. However, when comparing their execution times, it

is evident that the execution time of the brute force algorithm is lower than that of

the main algorithm only when the number of camera positions is very small. But,

as the number of camera positions increases, the execution time of the brute force

algorithm significantly increases.

2. The difference in execution time between both algorithms becomes evident when

using them to find the number of cameras in a large unit orthogonal polygon. The

execution time of the brute force algorithm becomes excessively high, making it

impractical to wait for results. However, upon using the main algorithm, results can

be generated within a few seconds.

3. When comparing the time complexity of both algorithms, it can be observed that

the time complexity of the main algorithm and the brute force algorithm are O(n)

and O(2n), respectively, where n is the number of vertices of the polygon.

Therefore, when considering the results of the number of cameras and time com-

plexity, the main algorithm is one algorithm that can find a suitable number of cameras

while also using a few execution times for processing.

33

5.2 Discussion

Once we have placed cameras to cover all positions using the main algorithm, we

can further improve the results by finding ways to reduce the number of cameras. For

example, we can consider if it is possible to move a camera from a corner position to a

triple junction position, as shown in the figure 5.1.

Figure 5.1 The number “1” are refer to camera positions and the two circle positions are

the improvement of cameras positions.

5.3 Recommendation

Since using the brute force algorithm to find the minimum number of cameras

required to cover the entire area in a unit orthogonal polygon with or without holes,

takes a substantial amount of time for program execution. To improve the efficiency of

the brute force algorithm, we can consider the following approaches.

1. Find the exact camera placement positions or adjust positions to allow cameras to

be placed in those specific locations. For instance, according to Theorem 3.1, we

can position cameras at specific corner positions. This reduces 2 positions needed

to run the brute force algorithm.

2. In some cases, it is unnecessary to run the brute force algorithm starting from

|K| = 1. If we can determine a lower bound on the number of cameras needed

in terms of the count of edge positions (E), corner positions (C), triple junction

positions (T), and crossroad positions (F), we can reduce unnecessary steps in

the brute force algorithm.

REFERENCES

REFERENCES

Aggarwal, A. (1984). The Art Gallery Theorem: Its variations, applications, and algorithmic

aspects. PhD thesis, Johns Hopkins University.

Appel, K., and Haken, W. (1975). Every planar map is four colorable. Bulletin of the Amer-

ican Mathematical Society, 81(5), 105-110.

Bjorling-Sachs, I., and Souvaine, D. (1991). A tight bound for guarding general polygons with

holes. Technical Report LCSR-TR-165, Rutgers University, Department of Computer

Science.

Chvátal, V. (1975). A combinatorial theorem in plane geometry. Journal of Combinatorial

Theory, Series B, 18, 39–41.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to Algorithms

(3rd ed.). MIT Press.

Fisk, S. (1978). A short proof of Chvátal’s watchman theorem. Journal of Combinatorial

Theory, Series B, 24(3), 374.

Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. New York, NY: W. H. Freeman.

Hoffmann, F., Kaufman, M., and Kriegel, K. (1991). The art gallery problem for polygons with

holes. Proceedings of the 32nd Symposium on Foundations of Computer Science,

39-48.

Kahn, J., Klawe, M., and Kleitman, D. (1983). Traditional galleries require fewer watchmen.

SIAM Journal on Algebraic and Discrete Methods, 4(2), 194–206.

Michael, T. S., and Pinciu, V. (2016). The orthogonal art gallery theorem with constrained

guards. Electric notes in discrete mathematics, 54, 27-32.

36

O’Rourke, J. (1987). Art Gallery Theorems and Algorithms. Oxford University Press.

Stewart, I. (2015). The Math Book: From Pythagoras to the 57th Dimension (4th ed.). Basic

Books.

West, D. B. (1996). Introduction to graph theory. Prentice Hall.

APPENDICES

APPENDIX A

APPLICATION OF C++ CODE FOR MAIN ALGORITHM AND

BRUTE FORCE ALGORITHM

39

This chapter presents some C++ code using in this thesis.

A.1 C++ code for the main algorithm

The main algorithm starts from one edge position then recursively moves and

places cameras. We ensure that these cameras can see every area within the unit or-

thogonal polygon. Then, we select a new starting edge position and consider all possible

starting points. By different start positions may obtain different results. We choose the

result with the optimal number of cameras for every starting positions. However, we can

not guarantee that the results is minimum number of cameras.

#include <iostream>

using namespace std ;

#include <iomanip>

#include <conio .h>

#include <windows.h>

#include <vector>

#define maxx 80

#define maxy 25

#define SleepT 0

#define SleepT2 0

int unused=0;

void gotoxy (short x , short y) {

COORD pos = {x , y } ;

SetConsoleCursorPosition (GetStdHandle (STD_OUTPUT_HANDLE) , pos) ;

}

char scr [maxy] [maxx]=

{

”###” ,

”###### ######### ###” ,

”###### ################ ###” ,

”#### ###” ,

”###### ################ ###” ,

”###### ################ ###” ,

40

”### ###” ,

”###### ################ ###” ,

”###### ################ ###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###”

} ;

int E[maxy] [maxx] ,countmaze=0,countfld=0, fld [maxy] [maxx] ,weight [maxy] [maxx] ,

f i l l t ab le [maxy] [maxx] , reduce=0,countC=0,countE=0,countT=0,count4=0,countCam=0,

minCamera,minX,minY;

char showC[6] = ”XEC34” ;

vector<int> pointx , pointy , Ex , Ey ;

// I n i t i a l i ze the variables and arrays used in the program

void in i t_var ()

{

// Create a vector of integers from 0 to maxy−1 and store i t in pointy

for (int l =0; l<maxy; l++) pointy .push_back(l) ;

// Create a vector of integers from 0 to maxx−1 and store i t in pointx

for (int k=0;k<maxx; k++) pointx .push_back(k) ;

// Set all elements in weight and fld arrays to 0 ,

41

// and all elements in E array to 0

memset(weight ,0 , sizeof (weight)) ;

memset(fld ,0 , sizeof (f ld)) ;

// Loop through each row and column of the maze

for (int i =0; i <maxy; i ++)

{

for (int j =0; j <maxx; j ++)

{

// I f the current character i s a space , print a space and set

weight and E arrays accordingly

i f (scr [i] [j]==’ ’) { cout << ’ ’ ; weight [i] [j] = 1;E [i] [j]=0;countmaze++; }

// I f the current character i s not a space , print a block

character and set weight and fld arrays accordingly

else { cout << char (219) ; weight [i] [j] = 0; fld [i] [j]=0; }

}

cout<<endl ;

}

}

void printmaze () // Pr int the maze

{

// Loop through each row and column of the maze

for (int i =0; i <maxy; i ++)

{

for (int j =0; j <maxx; j ++)

{

// I f the current character i s a space , print a space and set

weight , fld , and E arrays accordingly

i f (scr [i] [j]==’ ’) { cout << ’ ’ ; weight [i] [j] = 1; fld [i] [j]=1;E [i] [j]=0;}

// I f the current character i s not a space , print a block

character and set weight and fld arrays accordingly

else { cout << char (219) ; weight [i] [j] = 0; fld [i] [j]=0; }

}

cout<<endl ;

42

}

}

void flood1 (int x , int y) {

int c , d, j = x + 1;

do {

c = pointy [y] ;

d = pointx [j] ;

i f (f ld [c] [d] == 1)

{ gotoxy (d, c) ; cout << ’X’ ;

fld [c] [d] = 2;

countfld ++ ;

}

j ++;

} while (j < maxx && weight [c] [pointx [j]] !=0) ;

}

void flood2 (int x , int y) {

int a , b, i = y − 1;

do {

a = pointy [i] ;

b = pointx [x] ;

i f (f ld [a] [b] == 1)

{ gotoxy (b, a) ; cout << ’X’ ;

fld [a] [b] = 2;countfld ++ ;

}

i −−;

} while (i >= 0 && weight [pointy [i]] [b] != 0) ;

}

void flood3 (int x , int y) {

int c , d, j = x − 1;

do {

c = pointy [y] ;

d = pointx [j] ;

i f (f ld [c] [d] == 1)

43

{gotoxy (d, c) ; cout << ’X’ ;

fld [c] [d] = 2;countfld ++ ;

}

j −−;

} while (j >= 0 && weight [c] [pointx [j]] != 0) ;

}

void flood4 (int x , int y) {

int a , b, i = y + 1;

do {

a = pointy [i] ;

b = pointx [x] ;

i f (f ld [a] [b] == 1)

{ gotoxy (b, a) ; cout << ’X’ ;

fld [a] [b] = 2; countfld ++ ;

}

i ++;

} while (i < maxy && weight [pointy [i]] [b] != 0) ;

}

void walk (int x , int y)

{

i f (x>=0 && x<maxx && y>=0 && y<maxy && scr [y] [x]==’ ’)

{

gotoxy (x , y) ;

cout << ’#’ ;

scr [y] [x]= ’+’ ;

walk (x+1,y) ;

walk (x , y−1);

walk (x−1,y) ;

walk (x , y+1);

gotoxy (x , y) ;

int w1,w2,w3,w4,w5,w6,w7;

w1= weight [y−1][x]+

weight [y] [x−1]+ weight [y] [x+1]+

+weight [y+1][x] ;

44

w2= weight [y] [x−1]+weight [y] [x+1];

w3= weight [y−1][x]+weight [y+1][x] ;

w4= weight [y−1][x]+weight [y] [x−1];

w5= weight [y−1][x]+weight [y] [x+1];

w6= weight [y+1][x]+weight [y] [x−1];

w7= weight [y+1][x]+weight [y] [x+1];

i f (w2!=2 && w3!=2 | | w1==3 | | w1==4)

{

cout << showC[w1] ;

i f (w1==1) {countE++; Ex .push_back(x) ; Ey .push_back(y) ; }

i f (w1==2) {countC++;}

i f (w1==3) {countT++;}

i f (w1==4) {count4++;}

} else {cout << ’ ’ ; }

}

}

void f illcam (int x , int y , int a , int b)

{

i f (x>=0 && x<maxx && y>=0 && y<maxy)

{

i f (scr [y] [x]==’ ’)

{

scr [y] [x]= ’#’ ;

Sleep (SleepT) ;

gotoxy (x , y) ;

int w1,w2,w3,w4,w5,w6,w7;

w1= weight [y−1][x]+

weight [y] [x−1]+ weight [y] [x+1]+

+weight [y+1][x] ;

w2= weight [y] [x−1]+weight [y] [x+1];

w3= weight [y−1][x]+weight [y+1][x] ;

w4= weight [y−1][x]+weight [y] [x−1];

w5= weight [y−1][x]+weight [y] [x+1];

45

w6= weight [y+1][x]+weight [y] [x−1];

w7= weight [y+1][x]+weight [y] [x+1];

i f (w2!=2 && w3!=2 | | w1==3 | | w1==4)

{

i f (x !=a | | y!=b)

{

i f (w1==2 && w4==1 && w5==2)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++ ;countCam++;

scr [y] [x] = showC[w1] ;

flood1 (x , y) ;

flood2 (x , y) ;

}

}

i f (w1==2 && w4==1 && w5==0)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++ ;countCam++;

scr [y] [x] = showC[w1] ;

flood3 (x , y) ;

flood4 (x , y) ;

}

}

i f (w1==2 && w4==2)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++ ;countCam++;

scr [y] [x] = showC[w1] ;

flood2 (x , y) ;

flood3 (x , y) ;

}

46

}

i f (w1==2 && w4==0)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++ ;countCam++;

scr [y] [x] = showC[w1] ;

flood1 (x , y) ;

flood4 (x , y) ;

}

}

i f (w1==1 && w2==0 && w4==0)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++;countCam++;

scr [y] [x] = showC[w1] ;

flood4 (x , y) ;

}

}

i f (w1==1 && w2==1 && w4==0)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++;countCam++;

scr [y] [x] = showC[w1] ;

flood1 (x , y) ;

}

}

i f (w1==1 && w2==0 && w4==1)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++;countCam++;

scr [y] [x] = showC[w1] ;

flood2 (x , y) ;

47

}

}

i f (w1==1 && w2==1 && w4==1)

{

i f (f ld [y] [x]==1&&(fld [y−1][x]+ fld [y+1][x]+ fld [y] [x−1]+fld [y] [x+1])==2)

{

cout << ’1’ ; fld [y] [x]=2;countfld ++;countCam++;

scr [y] [x] = showC[w1] ;

flood3 (x , y) ;

}

}

i f (w1==3)

{

scr [y] [x] = showC[w1] ;

}

i f (w1==4)

{

scr [y] [x] = showC[w1] ;

}

} else cout << ’S’ ;

}

fillcam (x+1,y , a ,b) ;

f illcam (x , y−1,a ,b) ;

f illcam (x−1,y , a ,b) ;

f illcam (x , y+1,a ,b) ;

}

}

}

void check ()

{

int m,n ;

for (m=0;m<maxx;m++)

for (n=0;n<maxy;n++)

i f (weight [n] [m]!=0 && (weight [n−1][m] + weight [n+1][m]

+weight [n] [m−1] + weight [n] [m+1]==3))

48

{

i f (f ld [n] [m]==1 && (fld [n−1][m] + fld [n+1][m] +fld [n] [m−1] + fld [n] [m+1]==4))

{

gotoxy (m,n) ; cout << ’1’ ; fld [n] [m]=2;countfld ++;countCam++;

i f (f ld [n−1][m]==1) { flood2 (m,n) ; }

i f (f ld [n+1][m]==1) { flood4 (m,n) ; }

i f (f ld [n] [m−1]==1) { flood3 (m,n) ; }

i f (f ld [n] [m+1]==1) { flood1 (m,n) ; }

else ;

}

}

}

void check1 ()

{

int i , j ;

for (i =0; i <maxx; i ++)

for (j =0; j <maxy; j ++)

{

i f (f ld [j] [i]==1)

{

gotoxy (i , j) ; cout << ’1’ ; fld [j] [i]=2;countfld ++;countCam++;

flood1 (i , j) ; flood2 (i , j) ; flood3 (i , j) ; flood4 (i , j) ;

}

}

}

int main ()

{

int m,n, startX , startY , state=0;

minCamera=maxx*maxy;

in i t_var () ;

for (int k=0;k<maxy&& state==0;k++)

{

49

for (int j =0; j <maxx && state==0; j ++)

{

i f (scr [k] [j]==’ ’)

{

startY=k ;

startX=j ;

state=1;

}

}

}

walk (startX , startY) ;

for (int i =0; i <Ex . size () ; i ++)

{

gotoxy (0 ,0) ;

for (m=0;m<maxx;m++)

for (n=0;n<maxy;n++)

i f (weight [n] [m]==1){ scr [n] [m]= ’ ’ ; }

printmaze () ;

countCam=0;countfld=0;

fillcam (Ex [i] , Ey [i] , Ex [i] , Ey [i]) ;

i f (countmaze != countfld) {check () ; check1 () ; }

i f (minCamera>countCam)

{

minCamera=countCam;

minX=Ex [i] ;

minY=Ey[i] ;

}

}

gotoxy (0 ,0) ;

for (m=0;m<maxx;m++)

for (n=0;n<maxy;n++)

i f (weight [n] [m]==1){ scr [n] [m]= ’ ’ ; }

printmaze () ;

countCam=0;countfld=0;

fillcam (minX,minY,minX,minY) ;

gotoxy (minX,minY) ;

50

cout <<’S’ ;

i f (countmaze != countfld)

{check () ;

check1 () ; }

gotoxy (minX,minY) ;

cout <<’S’ ;

gotoxy (0 ,maxy) ;

cout << ”Number of vertices =” << 2*(countE+countC+countT)+4*count4 << endl ;

cout << ”Number of Cameras = ” << minCamera << endl ;

cout << ”Number of Edge = ” << countE << endl ;

cout << ”Number of Coner = ” << countC << endl ;

cout << ”Number of Three = ” << countT << endl ;

cout << ”Number of Four = ” << count4 << endl ;

cout << ”Start point Ex= ” << minX << endl ;

cout << ”Start point Ey= ” << minY << endl ;

return 0;

}

A.2 C++ code for brute force algorithm

The algorithm starts by placing one camera at every possible position and then

checks if these cameras can cover every area within the unit orthogonal polygon. If not,

we add more cameras, starting with 2, 3, and so on, until we find the minimum of cameras

that can cover the entire area.

#include <iostream>

using namespace std ;

#include <iomanip>

#include <conio .h>

#include <windows.h>

#include <vector>

#define maxx 80

#define maxy 25

#define SleepT 0

#define SleepT2 0

51

int unused=0;

int Area=0;

void gotoxy (short x , short y) {

COORD pos = {x , y } ;

SetConsoleCursorPosition (GetStdHandle (STD_OUTPUT_HANDLE) , pos) ;

}

char scr [maxy] [maxx]=

{

”###” ,

”###### ######### ###” ,

”###### ################ ###” ,

”#### ###” ,

”###### ################ ###” ,

”###### ################ ###” ,

”### ###” ,

”###### ################ ###” ,

”###### ################ ###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###” ,

”###”

} ;

52

int weight [maxy] [maxx] , f i l l tab le [maxy] [maxx] ,countC[4]={0 ,0 ,0 ,0} ,

numFill=0,camera=0,status=0,lowerbound;

char showC[6] = ”XEC34” ;

vector<int> pointx , pointy , type , Allpoint , position , position_type ;

void walk (int x , int y)

{

i f (x>=0 && x<maxx && y>=0 && y<maxy && scr [y] [x]==’ ’)

{

i f (x==maxx−2 && y==maxy−1) {cout << ’X’ ; getch () ; }

else

{

gotoxy (x , y) ;

cout << ’#’ ;

scr [y] [x]= ’#’ ;

walk (x+1,y) ; // r i ght

walk (x , y−1); //up

walk (x−1,y) ; // lef t

walk (x , y+1); //down

gotoxy (x , y) ;

int w1,w2,w3,w4,w5,w6,w7;

w1= weight [y−1][x]+

weight [y] [x−1]+ weight [y] [x+1]+

+weight [y+1][x] ;

w2= weight [y] [x−1]+weight [y] [x+1];

w3= weight [y−1][x]+weight [y+1][x] ;

w4= weight [y−1][x]+weight [y] [x−1];

w5= weight [y−1][x]+weight [y] [x+1];

w6= weight [y+1][x]+weight [y] [x−1];

w7= weight [y+1][x]+weight [y] [x+1];

i f (w2!=2 && w3!=2 | | w1==3 | | w1==4)

{

cout << showC[w1] ;

53

scr [y] [x] = showC[w1] ;

countC[w1−1]++;

i f (w1==1)

{ pointx .push_back(x) ;

pointy .push_back(y) ;

type .push_back (0) ;

}

i f (w4==2&& w1!=4)

{ pointx .push_back(x) ;

pointy .push_back(y) ;

type .push_back (1) ;

}

i f (w5==2&& w1!=4)

{ pointx .push_back(x) ;

pointy .push_back(y) ;

type .push_back (2) ;

}

i f (w6==2&& w1!=4)

{ pointx .push_back(x) ;

pointy .push_back(y) ;

type .push_back (3) ;

}

i f (w7==2&& w1!=4)

{ pointx .push_back(x) ;

pointy .push_back(y) ;

type .push_back (4) ;

}

}

else { cout << ’ ’ ; scr [y] [x]= ’ ’ ; }

}

}

}

void clear_maze ()

{

int i , j ;

54

for (j =0; j <maxy; j ++)

for (i =0; i <maxx; i ++)

{

i f (weight [j] [i] !=0)

{

gotoxy (i , j) ;

cout << ’ ’ ;

scr [j] [i] =’ ’ ;

f i l l t ab le [j] [i]=0;

}

else

{

f i l l t ab le [j] [i]=9;

}

}

}

int direction [4] [2]={{0 , −1} , {0 ,1} , { −1 ,0} , {1 ,0} } ,

UP=0,DW=1,LF=2,RT=3;

void f i l ldirectway (int x , int y , int dir) //UP=0,DW=1,LF=2,RT=3;

{

i f (weight [y] [x] !=0)

{

i f (scr [y] [x]==’ ’)

{

gotoxy (x , y) ;

cout << ’X’ ;

scr [y] [x]= ’X’ ;

numFill++;

}

f i l ldirectway (x+direction [d i r] [0] , y+direction [d i r] [1] , d i r) ;

}

}

55

void f i l lcorner (int x , int y , int cornertype)

{

i f (cornertype==0)

{

f i l ldirectway (x , y , 0) ;

f i l ldirectway (x , y , 1) ;

f i l ldirectway (x , y , 2) ;

f i l ldirectway (x , y , 3) ;

}

i f (cornertype==1)

{

f i l ldirectway (x , y , 0) ;

f i l ldirectway (x , y , 2) ;

}

i f (cornertype==2)

{

f i l ldirectway (x , y , 0) ;

f i l ldirectway (x , y , 3) ;

}

i f (cornertype==3)

{

f i l ldirectway (x , y , 1) ;

f i l ldirectway (x , y , 2) ;

}

i f (cornertype==4)

{

f i l ldirectway (x , y , 1) ;

f i l ldirectway (x , y , 3) ;

}

}

void in i t_var () //show maze

{

memset(weight ,0 , sizeof (weight)) ;

for (int i =0; i <maxy; i ++)

56

{

for (int j =0; j <maxx; j ++)

i f (scr [i] [j]==’ ’) { cout << ’ ’ ; weight [i] [j] = 1; Area++ ; } else

{ cout << char (219) ; weight [i] [j] = 0 ; }

cout<<endl ;

}

}

void generateCombinations (vector<int>& Allpoint , vector<int>& combination , int start , int k)

{ i f (k == 0)

{

for (int n : combination)

{

f i l lcorner (pointx [n] , pointy [n] , type [n]) ;

}

i f (numFill>=Area && combination . size () <camera)

{ position=combination ;

camera=combination . size () ;

status=1;

}

clear_maze () ;

numFill=0;

return ;

}

for (int i = start ; i < Allpoint . size ()&& status==0; i ++)

{

combination .push_back(Allpoint [i]) ;

generateCombinations (Allpoint , combination , i + 1 , k − 1) ;

combination .pop_back () ;

}

}

void displayCombinations (vector<int>& Allpoint)

{ int k ;

for (k = lowerbound; k <= Allpoint . size () ; k++)

{ vector<int> combination ;

57

gotoxy (0 ,maxy+2);

cout<<”k= ”<< k << endl ;

generateCombinations (Allpoint , combination , 0 , k) ;

i f (status==1)

return ;

}

}

int main ()

{ int k , j , c , startX , startY , check=0;

in i t_var () ;

for (int k=0;k<maxy&& check==0;k++)

{

for (int j =0; j <maxx && check==0; j ++)

{

i f (scr [k] [j]==’ ’)

{

startY=k ;

startX=j ;

check=1;

}

}

}

walk (startX , startY) ;

lowerbound=1;

for (k=0;k<type . size () ; k++)

{

Allpoint .push_back(k) ;

}

clear_maze () ;

camera=pointx . size () ;

displayCombinations (Allpoint) ;

clear_maze () ;

for (k=0;k<position . size () ; k++)

{

f i l lcorner (pointx [position [k]] , pointy [position [k]] , type [position [k]]) ;

58

}

for (k=0;k<position . size () ; k=k+c+1)

{ c=0;

for (j =1; j<=3&& k+j<position . size () ; j ++)

{

i f (pointx [position [k]]==pointx [position [k+j]]&&

pointy [position [k]]==pointy [position [k+j]])

c++;

}

gotoxy (pointx [position [k]] , pointy [position [k]]) ;

cout << c+1;

}

gotoxy (0 ,maxy+1);

int sum=0;

for (int i =0; i <4; i ++) sum+=countC[i] ;

cout << ”All Number of position =” << pointx . size () << endl ;

cout << ”Minimum Number of Cameras = ” << camera << endl ;

cout << ”Area = ” << Area << endl ;

cout << ”Number of end points = ” << countC[0]<< endl ;

cout << ”Number of corners = ” << countC[1]<< endl ;

cout << ”Number of T−junctions = ” << countC[2]<< endl ;

cout << ”Number of crossed−points = ” << countC[3]<< endl ;

return 0;

}

CURRICULUM VITAE

NAME : Amphon Kliaram GENDER : Male

EDUCATION BACKGROUND:

• Bachelor of Science (Mathematics), Suranaree University of Technology, Thailand,

2020

SCHOLARSHIP:

• Development and promotion of Science and Technology Talents Project (DPST),

Thai government scholarship for graduate honors student of Suranaree University

of Technology in Bachelor degree and Master degree.

CONFERENCE:

• The 26th Annual Meeting in Mathematics and The 1st International Annual Meeting in

Mathematics 2022 (AMM 2022), Online Conference, Thailand, May 18-20, 2022 “The

study of envelope of family of lines that divide areas of triangle and quadrilateral”

EXPERIENCE:

• Teaching in Calculus I, Calculus II, and Calculus III for SUT dormitory.

• Teaching in SUT camp.

	Cover
	Approved
	Abstract
	Acknowledgement
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Reference
	Appendix
	Biography

